Newer
Older
/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire processors.
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
*
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
* Copyright (c) 2004-2006 Macq Electronique SA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#ifdef CONFIG_ARCH_MXC
#include <mach/hardware.h>
#define FEC_ALIGNMENT 0xf
#else
#define FEC_ALIGNMENT 0x3
#endif
/*
* Define the fixed address of the FEC hardware.
*/
#if defined(CONFIG_M5272)
#define HAVE_mii_link_interrupt
static unsigned char fec_mac_default[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* Some hardware gets it MAC address out of local flash memory.
* if this is non-zero then assume it is the address to get MAC from.
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#elif defined (CONFIG_M5272C3)
#define FEC_FLASHMAC (0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 0xffc0406b
#endif /* CONFIG_M5272 */
/* Forward declarations of some structures to support different PHYs */
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define FEC_ENET_RX_PAGES 8
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE 2048
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
#error "FEC: descriptor ring size constants too large"
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/*
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* Hardware registers of the FEC device */
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
struct bufdesc *rx_bd_base;
struct bufdesc *tx_bd_base;
/* The next free ring entry */
struct bufdesc *cur_rx, *cur_tx;
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
spinlock_t hw_lock;
/* hold while accessing the mii_list_t() elements */
spinlock_t mii_lock;
uint phy_id;
uint phy_id_done;
uint phy_status;
uint phy_speed;
phy_info_t const *phy;
struct work_struct phy_task;
uint sequence_done;
uint mii_phy_task_queued;
uint phy_addr;
int index;
int opened;
int link;
int old_link;
int full_duplex;
};
static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);
/* MII processing. We keep this as simple as possible. Requests are
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val, struct net_device *dev);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 20
static mii_list_t mii_cmds[NMII];
static mii_list_t *mii_free;
static mii_list_t *mii_head;
static mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request,
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
/* Transmitter timeout */
#define TX_TIMEOUT (2 * HZ)
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
#define MII_REG_ANER 6 /* A-N Expansion Register */
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
if (!fep->link) {
/* Link is down or autonegotiation is in progress. */
return 1;
}
spin_lock_irqsave(&fep->hw_lock, flags);
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
spin_unlock_irqrestore(&fep->hw_lock, flags);
status &= ~BD_ENET_TX_STATS;
bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len;
/*
* On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh.
if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
unsigned int index;
index = bdp - fep->tx_bd_base;
memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
}
dev->stats.tx_bytes += skb->len;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
dma_sync_single(NULL, bdp->cbd_bufaddr,
bdp->cbd_datlen, DMA_TO_DEVICE);
/* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end.
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
dev->trans_start = jiffies;
/* Trigger transmission start */
/* If this was the last BD in the ring, start at the beginning again. */
if (status & BD_ENET_TX_WRAP)
bdp++;
if (bdp == fep->dirty_tx) {
fep->tx_full = 1;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&fep->hw_lock, flags);
return 0;
}
static void
fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
printk("%s: transmit timed out.\n", dev->name);
dev->stats.tx_errors++;
printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
(unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
(unsigned long)fep->dirty_tx,
(unsigned long)fep->cur_rx);
bdp = fep->tx_bd_base;
printk(" tx: %u buffers\n", TX_RING_SIZE);
for (i = 0 ; i < TX_RING_SIZE; i++) {
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
(int) bdp->cbd_bufaddr);
bdp++;
}
bdp = fep->rx_bd_base;
printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
for (i = 0 ; i < RX_RING_SIZE; i++) {
printk(" %08x: %04x %04x %08x\n",
(uint) bdp,
bdp->cbd_sc,
bdp->cbd_datlen,
(int) bdp->cbd_bufaddr);
bdp++;
}
}
#endif
fec_restart(dev, fep->full_duplex);
netif_wake_queue(dev);
}
static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id)
struct fec_enet_private *fep = netdev_priv(dev);
int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events, fep->hwp + FEC_IEVENT);
fec_enet_rx(dev);
}
/* Transmit OK, or non-fatal error. Update the buffer
* descriptors. FEC handles all errors, we just discover
* them as part of the transmit process.
*/
fec_enet_tx(dev);
}
if (int_events & FEC_ENET_MII) {
} while (int_events);
return ret;
}
static void
fec_enet_tx(struct net_device *dev)
{
struct fec_enet_private *fep;
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
if (bdp == fep->cur_tx && fep->tx_full == 0) break;
skb = fep->tx_skbuff[fep->skb_dirty];
/* Check for errors. */
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
dev->stats.tx_errors++;
if (status & BD_ENET_TX_HB) /* No heartbeat */
dev->stats.tx_heartbeat_errors++;
if (status & BD_ENET_TX_LC) /* Late collision */
dev->stats.tx_window_errors++;
if (status & BD_ENET_TX_RL) /* Retrans limit */
dev->stats.tx_aborted_errors++;
if (status & BD_ENET_TX_UN) /* Underrun */
dev->stats.tx_fifo_errors++;
if (status & BD_ENET_TX_CSL) /* Carrier lost */
dev->stats.tx_carrier_errors++;
dev->stats.tx_packets++;
if (status & BD_ENET_TX_READY)
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (status & BD_ENET_TX_DEF)
dev->stats.collisions++;
/* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted */
if (status & BD_ENET_TX_WRAP)
/* Since we have freed up a buffer, the ring is no longer full
*/
if (fep->tx_full) {
fep->tx_full = 0;
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
}
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static void
fec_enet_rx(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
#ifdef CONFIG_M532x
flush_cache_all();
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((status & BD_ENET_RX_LAST) == 0)
printk("FEC ENET: rcv is not +last\n");
/* Check for errors. */
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
dev->stats.rx_errors++;
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */
dev->stats.rx_length_errors++;
}
if (status & BD_ENET_RX_NO) /* Frame alignment */
dev->stats.rx_frame_errors++;
if (status & BD_ENET_RX_CR) /* CRC Error */
dev->stats.rx_crc_errors++;
if (status & BD_ENET_RX_OV) /* FIFO overrun */
dev->stats.rx_fifo_errors++;
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (status & BD_ENET_RX_CL) {
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame. */
dev->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
dev->stats.rx_bytes += pkt_len;
data = (__u8*)__va(bdp->cbd_bufaddr);
dma_sync_single(NULL, (unsigned long)__pa(data),
pkt_len - 4, DMA_FROM_DEVICE);
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = dev_alloc_skb(pkt_len - 4);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
} else {
skb_put(skb, pkt_len - 4); /* Make room */
skb_copy_to_linear_data(skb, data, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
}
rx_processing_done:
/* Clear the status flags for this buffer */
status &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty */
status |= BD_ENET_RX_EMPTY;
bdp->cbd_sc = status;
/* Update BD pointer to next entry */
if (status & BD_ENET_RX_WRAP)
bdp = fep->rx_bd_base;
else
bdp++;
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
}
/* called from interrupt context */
static void
fec_enet_mii(struct net_device *dev)
{
struct fec_enet_private *fep;
mii_list_t *mip;
fep = netdev_priv(dev);
spin_lock_irq(&fep->mii_lock);
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
(*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL)
writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
}
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
unsigned long flags;
mii_list_t *mip;
int retval;
spin_lock_irqsave(&fep->mii_lock, flags);
retval = 0;
if ((mip = mii_free) != NULL) {
mii_free = mip->mii_next;
mip->mii_regval = regval;
mip->mii_func = func;
mip->mii_next = NULL;
if (mii_head) {
mii_tail->mii_next = mip;
mii_tail = mip;
spin_unlock_irqrestore(&fep->mii_lock, flags);
return retval;
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
if(!c)
return;
for (; c->mii_data != mk_mii_end; c++)
mii_queue(dev, c->mii_data, c->funct);
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
status |= PHY_STAT_LINK;
status |= PHY_STAT_FAULT;
status |= PHY_STAT_ANC;
*s = status;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
status |= PHY_CONF_ANE;
status |= PHY_CONF_LOOP;
*s = status;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_CONF_SPMASK);
status |= PHY_CONF_10HDX;
status |= PHY_CONF_10FDX;
status |= PHY_CONF_100HDX;
status |= PHY_CONF_100FDX;
*s = status;
}
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_STAT_SPMASK);
status |= PHY_STAT_100FDX;
status |= PHY_STAT_100HDX;
status |= PHY_STAT_10FDX;
status |= PHY_STAT_10HDX;
static phy_cmd_t const phy_cmd_lxt970_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt970 = {
.name = "LXT970",
.config = phy_cmd_lxt970_config,
.startup = phy_cmd_lxt970_startup,
.ack_int = phy_cmd_lxt970_ack_int,
.shutdown = phy_cmd_lxt970_shutdown
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
status |= PHY_STAT_LINK;
} else {
fep->link = 0;
}
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
status |= PHY_STAT_100FDX;
status |= PHY_STAT_100HDX;
status |= PHY_STAT_10FDX;
status |= PHY_STAT_10HDX;
status |= PHY_STAT_FAULT;
*s = status;
}
static phy_cmd_t const phy_cmd_lxt971_config[] = {
/* limit to 10MBit because my prototype board
* doesn't work with 100. */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
/* Somehow does the 971 tell me that the link is down
* the first read after power-up.
* read here to get a valid value in ack_int */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
/* acknowledge the int before reading status ! */
{ mk_mii_read(MII_LXT971_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt971 = {
.name = "LXT971",
.config = phy_cmd_lxt971_config,
.startup = phy_cmd_lxt971_startup,
.ack_int = phy_cmd_lxt971_ack_int,
.shutdown = phy_cmd_lxt971_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
status = *s & ~(PHY_STAT_SPMASK);
case 1: status |= PHY_STAT_10HDX; break;
case 2: status |= PHY_STAT_100HDX; break;
case 5: status |= PHY_STAT_10FDX; break;
case 6: status |= PHY_STAT_100FDX; break;
*s = status;
}
static phy_cmd_t const phy_cmd_qs6612_config[] = {
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_REG_ANER), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_qs6612 = {
.name = "QS6612",
.config = phy_cmd_qs6612_config,
.startup = phy_cmd_qs6612_startup,
.ack_int = phy_cmd_qs6612_ack_int,
.shutdown = phy_cmd_qs6612_shutdown
};
/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy */
/* register definitions for the 874 */
#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
#define MII_AM79C874_DR 18 /* Diagnostic Register */
#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
#define MII_AM79C874_MCR 21 /* ModeControl Register */
#define MII_AM79C874_DC 23 /* Disconnect Counter */
#define MII_AM79C874_REC 24 /* Recieve Error Counter */
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);