Skip to content
makefiles.txt 36.9 KiB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
Linux Kernel Makefiles

This document describes the Linux kernel Makefiles.

=== Table of Contents

	=== 1 Overview
	=== 2 Who does what
	=== 3 The kbuild files
	   --- 3.1 Goal definitions
	   --- 3.2 Built-in object goals - obj-y
	   --- 3.3 Loadable module goals - obj-m
	   --- 3.4 Objects which export symbols
	   --- 3.5 Library file goals - lib-y
	   --- 3.6 Descending down in directories
	   --- 3.7 Compilation flags
	   --- 3.8 Command line dependency
	   --- 3.9 Dependency tracking
	   --- 3.10 Special Rules

	=== 4 Host Program support
	   --- 4.1 Simple Host Program
	   --- 4.2 Composite Host Programs
	   --- 4.3 Defining shared libraries  
	   --- 4.4 Using C++ for host programs
	   --- 4.5 Controlling compiler options for host programs
	   --- 4.6 When host programs are actually built
	   --- 4.7 Using hostprogs-$(CONFIG_FOO)

	=== 5 Kbuild clean infrastructure

	=== 6 Architecture Makefiles
	   --- 6.1 Set variables to tweak the build to the architecture
	   --- 6.2 Add prerequisites to prepare:
	   --- 6.3 List directories to visit when descending
	   --- 6.4 Architecture specific boot images
	   --- 6.5 Building non-kbuild targets
	   --- 6.6 Commands useful for building a boot image
	   --- 6.7 Custom kbuild commands
	   --- 6.8 Preprocessing linker scripts
	   --- 6.9 $(CC) support functions

	=== 7 Kbuild Variables
	=== 8 Makefile language
	=== 9 Credits
	=== 10 TODO

=== 1 Overview

The Makefiles have five parts:

	Makefile		the top Makefile.
	.config			the kernel configuration file.
	arch/$(ARCH)/Makefile	the arch Makefile.
	scripts/Makefile.*	common rules etc. for all kbuild Makefiles.
	kbuild Makefiles	there are about 500 of these.

The top Makefile reads the .config file, which comes from the kernel
configuration process.

The top Makefile is responsible for building two major products: vmlinux
(the resident kernel image) and modules (any module files).
It builds these goals by recursively descending into the subdirectories of
the kernel source tree.
The list of subdirectories which are visited depends upon the kernel
configuration. The top Makefile textually includes an arch Makefile
with the name arch/$(ARCH)/Makefile. The arch Makefile supplies
architecture-specific information to the top Makefile.

Each subdirectory has a kbuild Makefile which carries out the commands
passed down from above. The kbuild Makefile uses information from the
.config file to construct various file lists used by kbuild to build 
any built-in or modular targets.

scripts/Makefile.* contains all the definitions/rules etc. that
are used to build the kernel based on the kbuild makefiles.


=== 2 Who does what

People have four different relationships with the kernel Makefiles.

*Users* are people who build kernels.  These people type commands such as
"make menuconfig" or "make".  They usually do not read or edit
any kernel Makefiles (or any other source files).

*Normal developers* are people who work on features such as device
drivers, file systems, and network protocols.  These people need to
maintain the kbuild Makefiles for the subsystem that they are
working on.  In order to do this effectively, they need some overall
knowledge about the kernel Makefiles, plus detailed knowledge about the
public interface for kbuild.

*Arch developers* are people who work on an entire architecture, such
as sparc or ia64.  Arch developers need to know about the arch Makefile
as well as kbuild Makefiles.

*Kbuild developers* are people who work on the kernel build system itself.
These people need to know about all aspects of the kernel Makefiles.

This document is aimed towards normal developers and arch developers.


=== 3 The kbuild files

Most Makefiles within the kernel are kbuild Makefiles that use the
kbuild infrastructure. This chapter introduce the syntax used in the
kbuild makefiles.
The preferred name for the kbuild files is 'Kbuild' but 'Makefile' will
continue to be supported. All new developmen is expected to use the
Kbuild filename.

Section 3.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.

--- 3.1 Goal definitions

	Goal definitions are the main part (heart) of the kbuild Makefile.
	These lines define the files to be built, any special compilation
	options, and any subdirectories to be entered recursively.

	The most simple kbuild makefile contains one line:

	Example:
		obj-y += foo.o

	This tell kbuild that there is one object in that directory named
	foo.o. foo.o will be built from foo.c or foo.S.

	If foo.o shall be built as a module, the variable obj-m is used.
	Therefore the following pattern is often used:

	Example:
		obj-$(CONFIG_FOO) += foo.o

	$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
	If CONFIG_FOO is neither y nor m, then the file will not be compiled
	nor linked.

--- 3.2 Built-in object goals - obj-y

	The kbuild Makefile specifies object files for vmlinux
	in the lists $(obj-y).  These lists depend on the kernel
	configuration.

	Kbuild compiles all the $(obj-y) files.  It then calls
	"$(LD) -r" to merge these files into one built-in.o file.
	built-in.o is later linked into vmlinux by the parent Makefile.

	The order of files in $(obj-y) is significant.  Duplicates in
	the lists are allowed: the first instance will be linked into
	built-in.o and succeeding instances will be ignored.

	Link order is significant, because certain functions
	(module_init() / __initcall) will be called during boot in the
	order they appear. So keep in mind that changing the link
	order may e.g.  change the order in which your SCSI
	controllers are detected, and thus you disks are renumbered.

	Example:
		#drivers/isdn/i4l/Makefile
		# Makefile for the kernel ISDN subsystem and device drivers.
		# Each configuration option enables a list of files.
		obj-$(CONFIG_ISDN)             += isdn.o
		obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

--- 3.3 Loadable module goals - obj-m

	$(obj-m) specify object files which are built as loadable
	kernel modules.

	A module may be built from one source file or several source
	files. In the case of one source file, the kbuild makefile
	simply adds the file to $(obj-m).

	Example:
		#drivers/isdn/i4l/Makefile
		obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

	Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm'

	If a kernel module is built from several source files, you specify
	that you want to build a module in the same way as above.

	Kbuild needs to know which the parts that you want to build your
	module from, so you have to tell it by setting an
	$(<module_name>-objs) variable.

	Example:
		#drivers/isdn/i4l/Makefile
		obj-$(CONFIG_ISDN) += isdn.o
		isdn-objs := isdn_net_lib.o isdn_v110.o isdn_common.o

	In this example, the module name will be isdn.o. Kbuild will
	compile the objects listed in $(isdn-objs) and then run
	"$(LD) -r" on the list of these files to generate isdn.o.

	Kbuild recognises objects used for composite objects by the suffix
	-objs, and the suffix -y. This allows the Makefiles to use
	the value of a CONFIG_ symbol to determine if an object is part
Loading
Loading full blame...