Skip to content
rmi_f01.c 14.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * Copyright (c) 2011-2016 Synaptics Incorporated
 * Copyright (c) 2011 Unixphere
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/kconfig.h>
#include <linux/rmi.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/of.h>
#include "rmi_driver.h"

#define RMI_PRODUCT_ID_LENGTH    10
#define RMI_PRODUCT_INFO_LENGTH   2

#define RMI_DATE_CODE_LENGTH      3

#define PRODUCT_ID_OFFSET 0x10
#define PRODUCT_INFO_OFFSET 0x1E


/* Force a firmware reset of the sensor */
#define RMI_F01_CMD_DEVICE_RESET	1

/* Various F01_RMI_QueryX bits */

#define RMI_F01_QRY1_CUSTOM_MAP		BIT(0)
#define RMI_F01_QRY1_NON_COMPLIANT	BIT(1)
#define RMI_F01_QRY1_HAS_LTS		BIT(2)
#define RMI_F01_QRY1_HAS_SENSOR_ID	BIT(3)
#define RMI_F01_QRY1_HAS_CHARGER_INP	BIT(4)
#define RMI_F01_QRY1_HAS_ADJ_DOZE	BIT(5)
#define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF	BIT(6)
#define RMI_F01_QRY1_HAS_QUERY42	BIT(7)

#define RMI_F01_QRY5_YEAR_MASK		0x1f
#define RMI_F01_QRY6_MONTH_MASK		0x0f
#define RMI_F01_QRY7_DAY_MASK		0x1f

#define RMI_F01_QRY2_PRODINFO_MASK	0x7f

#define RMI_F01_BASIC_QUERY_LEN		21 /* From Query 00 through 20 */

struct f01_basic_properties {
	u8 manufacturer_id;
	bool has_lts;
	bool has_adjustable_doze;
	bool has_adjustable_doze_holdoff;
	char dom[11]; /* YYYY/MM/DD + '\0' */
	u8 product_id[RMI_PRODUCT_ID_LENGTH + 1];
	u16 productinfo;
	u32 firmware_id;
};

/* F01 device status bits */

/* Most recent device status event */
#define RMI_F01_STATUS_CODE(status)		((status) & 0x0f)
/* The device has lost its configuration for some reason. */
#define RMI_F01_STATUS_UNCONFIGURED(status)	(!!((status) & 0x80))

/* Control register bits */

/*
 * Sleep mode controls power management on the device and affects all
 * functions of the device.
 */
#define RMI_F01_CTRL0_SLEEP_MODE_MASK	0x03

#define RMI_SLEEP_MODE_NORMAL		0x00
#define RMI_SLEEP_MODE_SENSOR_SLEEP	0x01
#define RMI_SLEEP_MODE_RESERVED0	0x02
#define RMI_SLEEP_MODE_RESERVED1	0x03

/*
 * This bit disables whatever sleep mode may be selected by the sleep_mode
 * field and forces the device to run at full power without sleeping.
 */
#define RMI_F01_CRTL0_NOSLEEP_BIT	BIT(2)

/*
 * When this bit is set, the touch controller employs a noise-filtering
 * algorithm designed for use with a connected battery charger.
 */
#define RMI_F01_CRTL0_CHARGER_BIT	BIT(5)

/*
 * Sets the report rate for the device. The effect of this setting is
 * highly product dependent. Check the spec sheet for your particular
 * touch sensor.
 */
#define RMI_F01_CRTL0_REPORTRATE_BIT	BIT(6)

/*
 * Written by the host as an indicator that the device has been
 * successfully configured.
 */
#define RMI_F01_CRTL0_CONFIGURED_BIT	BIT(7)

/**
 * @ctrl0 - see the bit definitions above.
 * @doze_interval - controls the interval between checks for finger presence
 * when the touch sensor is in doze mode, in units of 10ms.
 * @wakeup_threshold - controls the capacitance threshold at which the touch
 * sensor will decide to wake up from that low power state.
 * @doze_holdoff - controls how long the touch sensor waits after the last
 * finger lifts before entering the doze state, in units of 100ms.
 */
struct f01_device_control {
	u8 ctrl0;
	u8 doze_interval;
	u8 wakeup_threshold;
	u8 doze_holdoff;
};

struct f01_data {
	struct f01_basic_properties properties;
	struct f01_device_control device_control;

	u16 doze_interval_addr;
	u16 wakeup_threshold_addr;
	u16 doze_holdoff_addr;

	bool suspended;
	bool old_nosleep;

	unsigned int num_of_irq_regs;
};

static int rmi_f01_read_properties(struct rmi_device *rmi_dev,
				   u16 query_base_addr,
				   struct f01_basic_properties *props)
{
	u8 queries[RMI_F01_BASIC_QUERY_LEN];
	int ret;
	int query_offset = query_base_addr;
	bool has_ds4_queries = false;
	bool has_query42 = false;
	bool has_sensor_id = false;
	bool has_package_id_query = false;
	bool has_build_id_query = false;
	u16 prod_info_addr;
	u8 ds4_query_len;

	ret = rmi_read_block(rmi_dev, query_offset,
			       queries, RMI_F01_BASIC_QUERY_LEN);
	if (ret) {
		dev_err(&rmi_dev->dev,
			"Failed to read device query registers: %d\n", ret);
		return ret;
	}

	prod_info_addr = query_offset + 17;
	query_offset += RMI_F01_BASIC_QUERY_LEN;

	/* Now parse what we got */
	props->manufacturer_id = queries[0];

	props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS;
	props->has_adjustable_doze =
			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE;
	props->has_adjustable_doze_holdoff =
			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF;
	has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42;
	has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID;

	snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d",
		 queries[5] & RMI_F01_QRY5_YEAR_MASK,
		 queries[6] & RMI_F01_QRY6_MONTH_MASK,
		 queries[7] & RMI_F01_QRY7_DAY_MASK);

	memcpy(props->product_id, &queries[11],
		RMI_PRODUCT_ID_LENGTH);
	props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0';

	props->productinfo =
			((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) |
			(queries[3] & RMI_F01_QRY2_PRODINFO_MASK);

	if (has_sensor_id)
		query_offset++;

	if (has_query42) {
		ret = rmi_read(rmi_dev, query_offset, queries);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read query 42 register: %d\n", ret);
			return ret;
		}

		has_ds4_queries = !!(queries[0] & BIT(0));
		query_offset++;
	}

	if (has_ds4_queries) {
		ret = rmi_read(rmi_dev, query_offset, &ds4_query_len);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read DS4 queries length: %d\n", ret);
			return ret;
		}
		query_offset++;

		if (ds4_query_len > 0) {
			ret = rmi_read(rmi_dev, query_offset, queries);
			if (ret) {
				dev_err(&rmi_dev->dev,
					"Failed to read DS4 queries: %d\n",
					ret);
				return ret;
			}

			has_package_id_query = !!(queries[0] & BIT(0));
			has_build_id_query = !!(queries[0] & BIT(1));
		}

		if (has_package_id_query)
			prod_info_addr++;

		if (has_build_id_query) {
			ret = rmi_read_block(rmi_dev, prod_info_addr, queries,
					    3);
			if (ret) {
				dev_err(&rmi_dev->dev,
					"Failed to read product info: %d\n",
					ret);
				return ret;
			}

			props->firmware_id = queries[1] << 8 | queries[0];
			props->firmware_id += queries[2] * 65536;
		}
	}

	return 0;
}

char *rmi_f01_get_product_ID(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);

	return f01->properties.product_id;
}

static int rmi_f01_probe(struct rmi_function *fn)
{
	struct rmi_device *rmi_dev = fn->rmi_dev;
	struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct f01_data *f01;
	int error;
	u16 ctrl_base_addr = fn->fd.control_base_addr;
	u8 device_status;
	u8 temp;

	f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL);
	if (!f01)
		return -ENOMEM;

	f01->num_of_irq_regs = driver_data->num_of_irq_regs;

	/*
	 * Set the configured bit and (optionally) other important stuff
	 * in the device control register.
	 */

	error = rmi_read(rmi_dev, fn->fd.control_base_addr,
			 &f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to read F01 control: %d\n", error);
		return error;
	}

	switch (pdata->power_management.nosleep) {
	case RMI_F01_NOSLEEP_DEFAULT:
		break;
	case RMI_F01_NOSLEEP_OFF:
		f01->device_control.ctrl0 &= ~RMI_F01_CRTL0_NOSLEEP_BIT;
		break;
	case RMI_F01_NOSLEEP_ON:
		f01->device_control.ctrl0 |= RMI_F01_CRTL0_NOSLEEP_BIT;
		break;
	}

	/*
	 * Sleep mode might be set as a hangover from a system crash or
	 * reboot without power cycle.  If so, clear it so the sensor
	 * is certain to function.
	 */
	if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) !=
			RMI_SLEEP_MODE_NORMAL) {
		dev_warn(&fn->dev,
			 "WARNING: Non-zero sleep mode found. Clearing...\n");
		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	}

	f01->device_control.ctrl0 |= RMI_F01_CRTL0_CONFIGURED_BIT;

	error = rmi_write(rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to write F01 control: %d\n", error);
		return error;
	}

	/* Dummy read in order to clear irqs */
	error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp);
	if (error < 0) {
		dev_err(&fn->dev, "Failed to read Interrupt Status.\n");
		return error;
	}

	error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr,
					&f01->properties);
	if (error < 0) {
		dev_err(&fn->dev, "Failed to read F01 properties.\n");
		return error;
	}

	dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n",
		 f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown",
		 f01->properties.product_id, f01->properties.firmware_id);

	/* Advance to interrupt control registers, then skip over them. */
	ctrl_base_addr++;
	ctrl_base_addr += f01->num_of_irq_regs;

	/* read control register */
	if (f01->properties.has_adjustable_doze) {
		f01->doze_interval_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.doze_interval) {
			f01->device_control.doze_interval =
				pdata->power_management.doze_interval;
			error = rmi_write(rmi_dev, f01->doze_interval_addr,
					  f01->device_control.doze_interval);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 doze interval register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->doze_interval_addr,
					 &f01->device_control.doze_interval);
			if (error) {
				dev_err(&fn->dev,
					"Failed to read F01 doze interval register: %d\n",
					error);
				return error;
			}
		}

		f01->wakeup_threshold_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.wakeup_threshold) {
			f01->device_control.wakeup_threshold =
				pdata->power_management.wakeup_threshold;
			error = rmi_write(rmi_dev, f01->wakeup_threshold_addr,
					  f01->device_control.wakeup_threshold);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 wakeup threshold register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->wakeup_threshold_addr,
					 &f01->device_control.wakeup_threshold);
			if (error < 0) {
				dev_err(&fn->dev,
					"Failed to read F01 wakeup threshold register: %d\n",
					error);
				return error;
			}
		}
	}

	if (f01->properties.has_lts)
		ctrl_base_addr++;

	if (f01->properties.has_adjustable_doze_holdoff) {
		f01->doze_holdoff_addr = ctrl_base_addr;
		ctrl_base_addr++;

		if (pdata->power_management.doze_holdoff) {
			f01->device_control.doze_holdoff =
				pdata->power_management.doze_holdoff;
			error = rmi_write(rmi_dev, f01->doze_holdoff_addr,
					  f01->device_control.doze_holdoff);
			if (error) {
				dev_err(&fn->dev,
					"Failed to configure F01 doze holdoff register: %d\n",
					error);
				return error;
			}
		} else {
			error = rmi_read(rmi_dev, f01->doze_holdoff_addr,
					 &f01->device_control.doze_holdoff);
			if (error) {
				dev_err(&fn->dev,
					"Failed to read F01 doze holdoff register: %d\n",
					error);
				return error;
			}
		}
	}

	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
	if (error < 0) {
		dev_err(&fn->dev,
			"Failed to read device status: %d\n", error);
		return error;
	}

	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
		dev_err(&fn->dev,
			"Device was reset during configuration process, status: %#02x!\n",
			RMI_F01_STATUS_CODE(device_status));
		return -EINVAL;
	}

	dev_set_drvdata(&fn->dev, f01);

	return 0;
}

static int rmi_f01_config(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev,
			"Failed to write device_control register: %d\n", error);
		return error;
	}

	if (f01->properties.has_adjustable_doze) {
		error = rmi_write(fn->rmi_dev, f01->doze_interval_addr,
				  f01->device_control.doze_interval);
		if (error) {
			dev_err(&fn->dev,
				"Failed to write doze interval: %d\n", error);
			return error;
		}

		error = rmi_write_block(fn->rmi_dev,
					 f01->wakeup_threshold_addr,
					 &f01->device_control.wakeup_threshold,
					 sizeof(u8));
		if (error) {
			dev_err(&fn->dev,
				"Failed to write wakeup threshold: %d\n",
				error);
			return error;
		}
	}

	if (f01->properties.has_adjustable_doze_holdoff) {
		error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr,
				  f01->device_control.doze_holdoff);
		if (error) {
			dev_err(&fn->dev,
				"Failed to write doze holdoff: %d\n", error);
			return error;
		}
	}

	return 0;
}

static int rmi_f01_suspend(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	f01->old_nosleep =
		f01->device_control.ctrl0 & RMI_F01_CRTL0_NOSLEEP_BIT;
	f01->device_control.ctrl0 &= ~RMI_F01_CRTL0_NOSLEEP_BIT;

	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	if (device_may_wakeup(fn->rmi_dev->xport->dev))
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1;
	else
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error);
		if (f01->old_nosleep)
			f01->device_control.ctrl0 |= RMI_F01_CRTL0_NOSLEEP_BIT;
		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
		return error;
	}

	return 0;
}

static int rmi_f01_resume(struct rmi_function *fn)
{
	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
	int error;

	if (f01->old_nosleep)
		f01->device_control.ctrl0 |= RMI_F01_CRTL0_NOSLEEP_BIT;

	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
	f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;

	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
			  f01->device_control.ctrl0);
	if (error) {
		dev_err(&fn->dev,
			"Failed to restore normal operation: %d.\n", error);
		return error;
	}

	return 0;
}

static int rmi_f01_attention(struct rmi_function *fn,
			     unsigned long *irq_bits)
{
	struct rmi_device *rmi_dev = fn->rmi_dev;
	int error;
	u8 device_status;

	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
	if (error) {
		dev_err(&fn->dev,
			"Failed to read device status: %d.\n", error);
		return error;
	}

	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
		dev_warn(&fn->dev, "Device reset detected.\n");
		error = rmi_dev->driver->reset_handler(rmi_dev);
		if (error) {
			dev_err(&fn->dev, "Device reset failed: %d\n", error);
			return error;
		}
	}

	return 0;
}

struct rmi_function_handler rmi_f01_handler = {
	.driver = {
		.name	= "rmi4_f01",
		/*
		 * Do not allow user unbinding F01 as it is critical
		 * function.
		 */
		.suppress_bind_attrs = true,
	},
	.func		= 0x01,
	.probe		= rmi_f01_probe,
	.config		= rmi_f01_config,
	.attention	= rmi_f01_attention,
	.suspend	= rmi_f01_suspend,
	.resume		= rmi_f01_resume,
};