Newer
Older
Architectures: s390
Parameters: none
This capability controls which SIGP orders will be handled completely in user
space. With this capability enabled, all fast orders will be handled completely
in the kernel:
- SENSE
- SENSE RUNNING
- EXTERNAL CALL
- EMERGENCY SIGNAL
- CONDITIONAL EMERGENCY SIGNAL
All other orders will be handled completely in user space.
Only privileged operation exceptions will be checked for in the kernel (or even
in the hardware prior to interception). If this capability is not enabled, the
old way of handling SIGP orders is used (partially in kernel and user space).
7.3 KVM_CAP_S390_VECTOR_REGISTERS
Architectures: s390
Parameters: none
Returns: 0 on success, negative value on error
Allows use of the vector registers introduced with z13 processor, and
provides for the synchronization between host and user space. Will
return -EINVAL if the machine does not support vectors.
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
7.4 KVM_CAP_S390_USER_STSI
Architectures: s390
Parameters: none
This capability allows post-handlers for the STSI instruction. After
initial handling in the kernel, KVM exits to user space with
KVM_EXIT_S390_STSI to allow user space to insert further data.
Before exiting to userspace, kvm handlers should fill in s390_stsi field of
vcpu->run:
struct {
__u64 addr;
__u8 ar;
__u8 reserved;
__u8 fc;
__u8 sel1;
__u16 sel2;
} s390_stsi;
@addr - guest address of STSI SYSIB
@fc - function code
@sel1 - selector 1
@sel2 - selector 2
@ar - access register number
KVM handlers should exit to userspace with rc = -EREMOTE.
7.5 KVM_CAP_SPLIT_IRQCHIP
Architectures: x86
Parameters: args[0] - number of routes reserved for userspace IOAPICs
Returns: 0 on success, -1 on error
Create a local apic for each processor in the kernel. This can be used
instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
IOAPIC and PIC (and also the PIT, even though this has to be enabled
separately).
This capability also enables in kernel routing of interrupt requests;
when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
used in the IRQ routing table. The first args[0] MSI routes are reserved
for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Fails if VCPU has already been created, or if the irqchip is already in the
kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
7.6 KVM_CAP_S390_RI
Architectures: s390
Parameters: none
Allows use of runtime-instrumentation introduced with zEC12 processor.
Will return -EINVAL if the machine does not support runtime-instrumentation.
Will return -EBUSY if a VCPU has already been created.
7.7 KVM_CAP_X2APIC_API
Architectures: x86
Parameters: args[0] - features that should be enabled
Returns: 0 on success, -EINVAL when args[0] contains invalid features
Valid feature flags in args[0] are
#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
respective sections.
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
as a broadcast even in x2APIC mode in order to support physical x2APIC
without interrupt remapping. This is undesirable in logical mode,
where 0xff represents CPUs 0-7 in cluster 0.
7.8 KVM_CAP_S390_USER_INSTR0
Architectures: s390
Parameters: none
With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
be intercepted and forwarded to user space. User space can use this
mechanism e.g. to realize 2-byte software breakpoints. The kernel will
not inject an operating exception for these instructions, user space has
to take care of that.
This capability can be enabled dynamically even if VCPUs were already
created and are running.
8. Other capabilities.
----------------------
This section lists capabilities that give information about other
features of the KVM implementation.
8.1 KVM_CAP_PPC_HWRNG
Architectures: ppc
This capability, if KVM_CHECK_EXTENSION indicates that it is
available, means that that the kernel has an implementation of the
H_RANDOM hypercall backed by a hardware random-number generator.
If present, the kernel H_RANDOM handler can be enabled for guest use
with the KVM_CAP_PPC_ENABLE_HCALL capability.
8.2 KVM_CAP_HYPERV_SYNIC
Architectures: x86
This capability, if KVM_CHECK_EXTENSION indicates that it is
available, means that that the kernel has an implementation of the
Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
used to support Windows Hyper-V based guest paravirt drivers(VMBus).
In order to use SynIC, it has to be activated by setting this
capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
will disable the use of APIC hardware virtualization even if supported
by the CPU, as it's incompatible with SynIC auto-EOI behavior.
8.3 KVM_CAP_PPC_RADIX_MMU
Architectures: ppc
This capability, if KVM_CHECK_EXTENSION indicates that it is
available, means that that the kernel can support guests using the
radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
processor).
8.4 KVM_CAP_PPC_HASH_MMU_V3
Architectures: ppc
This capability, if KVM_CHECK_EXTENSION indicates that it is
available, means that that the kernel can support guests using the
hashed page table MMU defined in Power ISA V3.00 (as implemented in
the POWER9 processor), including in-memory segment tables.
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
8.5 KVM_CAP_MIPS_VZ
Architectures: mips
This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
it is available, means that full hardware assisted virtualization capabilities
of the hardware are available for use through KVM. An appropriate
KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
utilises it.
If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
available, it means that the VM is using full hardware assisted virtualization
capabilities of the hardware. This is useful to check after creating a VM with
KVM_VM_MIPS_DEFAULT.
The value returned by KVM_CHECK_EXTENSION should be compared against known
values (see below). All other values are reserved. This is to allow for the
possibility of other hardware assisted virtualization implementations which
may be incompatible with the MIPS VZ ASE.
0: The trap & emulate implementation is in use to run guest code in user
mode. Guest virtual memory segments are rearranged to fit the guest in the
user mode address space.
1: The MIPS VZ ASE is in use, providing full hardware assisted
virtualization, including standard guest virtual memory segments.
8.6 KVM_CAP_MIPS_TE
Architectures: mips
This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
it is available, means that the trap & emulate implementation is available to
run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
to KVM_CREATE_VM to create a VM which utilises it.
If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
available, it means that the VM is using trap & emulate.
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
8.7 KVM_CAP_MIPS_64BIT
Architectures: mips
This capability indicates the supported architecture type of the guest, i.e. the
supported register and address width.
The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
be checked specifically against known values (see below). All other values are
reserved.
0: MIPS32 or microMIPS32.
Both registers and addresses are 32-bits wide.
It will only be possible to run 32-bit guest code.
1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
Registers are 64-bits wide, but addresses are 32-bits wide.
64-bit guest code may run but cannot access MIPS64 memory segments.
It will also be possible to run 32-bit guest code.
2: MIPS64 or microMIPS64 with access to all address segments.
Both registers and addresses are 64-bits wide.
It will be possible to run 64-bit or 32-bit guest code.