Newer
Older
Nathan Fontenot
committed
drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
if (!drconf_cell_cnt)
return -1;
Nathan Fontenot
committed
lmb_size = of_get_lmb_size(memory);
if (!lmb_size)
Nathan Fontenot
committed
rc = of_get_assoc_arrays(memory, &aa);
if (rc)
Nathan Fontenot
committed
for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
Nathan Fontenot
committed
struct of_drconf_cell drmem;
read_drconf_cell(&drmem, &dm);
/* skip this block if it is reserved or not assigned to
* this partition */
if ((drmem.flags & DRCONF_MEM_RESERVED)
|| !(drmem.flags & DRCONF_MEM_ASSIGNED))
continue;
if ((scn_addr < drmem.base_addr)
|| (scn_addr >= (drmem.base_addr + lmb_size)))
Nathan Fontenot
committed
nid = of_drconf_to_nid_single(&drmem, &aa);
break;
}
return nid;
}
/*
* Find the node associated with a hot added memory section for memory
* represented in the device tree as a node (i.e. memory@XXXX) for
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
struct device_node *memory;
for_each_node_by_type(memory, "memory") {
unsigned long start, size;
int ranges;
const __be32 *memcell_buf;
unsigned int len;
memcell_buf = of_get_property(memory, "reg", &len);
if (!memcell_buf || len <= 0)
continue;
/* ranges in cell */
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
while (ranges--) {
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
size = read_n_cells(n_mem_size_cells, &memcell_buf);
if ((scn_addr < start) || (scn_addr >= (start + size)))
continue;
nid = of_node_to_nid_single(memory);
break;
}
Nathan Fontenot
committed
Nathan Fontenot
committed
}
of_node_put(memory);
Nathan Fontenot
committed
}
/*
* Find the node associated with a hot added memory section. Section
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
* sections are fully contained within a single MEMBLOCK.
*/
int hot_add_scn_to_nid(unsigned long scn_addr)
{
struct device_node *memory = NULL;
if (!numa_enabled || (min_common_depth < 0))
Nathan Fontenot
committed
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (memory) {
nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
of_node_put(memory);
} else {
nid = hot_add_node_scn_to_nid(scn_addr);
Nathan Fontenot
committed
}
if (nid < 0 || !node_online(nid))
if (NODE_DATA(nid)->node_spanned_pages)
return nid;
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages) {
found = 1;
break;
BUG_ON(!found);
return nid;
static u64 hot_add_drconf_memory_max(void)
{
struct device_node *memory = NULL;
struct device_node *dn = NULL;
unsigned int drconf_cell_cnt = 0;
u64 lmb_size = 0;
const __be32 *dm = NULL;
const __be64 *lrdr = NULL;
struct of_drconf_cell drmem;
dn = of_find_node_by_path("/rtas");
if (dn) {
lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
of_node_put(dn);
if (lrdr)
return be64_to_cpup(lrdr);
}
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (memory) {
drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
lmb_size = of_get_lmb_size(memory);
/* Advance to the last cell, each cell has 6 32 bit integers */
dm += (drconf_cell_cnt - 1) * 6;
read_drconf_cell(&drmem, &dm);
of_node_put(memory);
return drmem.base_addr + lmb_size;
}
/*
* memory_hotplug_max - return max address of memory that may be added
*
* This is currently only used on systems that support drconfig memory
* hotplug.
*/
u64 memory_hotplug_max(void)
{
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
#endif /* CONFIG_MEMORY_HOTPLUG */
/* Virtual Processor Home Node (VPHN) support */
#ifdef CONFIG_PPC_SPLPAR
#include "vphn.h"
struct topology_update_data {
struct topology_update_data *next;
unsigned int cpu;
int old_nid;
int new_nid;
};
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
static int prrn_enabled;
static void reset_topology_timer(void);
/*
* Store the current values of the associativity change counters in the
* hypervisor.
*/
static void setup_cpu_associativity_change_counters(void)
{
int cpu;
/* The VPHN feature supports a maximum of 8 reference points */
BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
for_each_possible_cpu(cpu) {
int i;
u8 *counts = vphn_cpu_change_counts[cpu];
volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
for (i = 0; i < distance_ref_points_depth; i++)
counts[i] = hypervisor_counts[i];
}
}
/*
* The hypervisor maintains a set of 8 associativity change counters in
* the VPA of each cpu that correspond to the associativity levels in the
* ibm,associativity-reference-points property. When an associativity
* level changes, the corresponding counter is incremented.
*
* Set a bit in cpu_associativity_changes_mask for each cpu whose home
* node associativity levels have changed.
*
* Returns the number of cpus with unhandled associativity changes.
*/
static int update_cpu_associativity_changes_mask(void)
{
cpumask_t *changes = &cpu_associativity_changes_mask;
for_each_possible_cpu(cpu) {
int i, changed = 0;
u8 *counts = vphn_cpu_change_counts[cpu];
volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
for (i = 0; i < distance_ref_points_depth; i++) {
if (hypervisor_counts[i] != counts[i]) {
counts[i] = hypervisor_counts[i];
changed = 1;
}
}
if (changed) {
cpumask_or(changes, changes, cpu_sibling_mask(cpu));
cpu = cpu_last_thread_sibling(cpu);
}
}
return cpumask_weight(changes);
}
/*
* Retrieve the new associativity information for a virtual processor's
* home node.
*/
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
long rc;
long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
u64 flags = 1;
int hwcpu = get_hard_smp_processor_id(cpu);
rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
vphn_unpack_associativity(retbuf, associativity);
return rc;
}
static long vphn_get_associativity(unsigned long cpu,
__be32 *associativity)
long rc;
rc = hcall_vphn(cpu, associativity);
switch (rc) {
case H_FUNCTION:
printk(KERN_INFO
"VPHN is not supported. Disabling polling...\n");
stop_topology_update();
break;
case H_HARDWARE:
printk(KERN_ERR
"hcall_vphn() experienced a hardware fault "
"preventing VPHN. Disabling polling...\n");
stop_topology_update();
}
return rc;
}
/*
* Update the CPU maps and sysfs entries for a single CPU when its NUMA
* characteristics change. This function doesn't perform any locking and is
* only safe to call from stop_machine().
*/
static int update_cpu_topology(void *data)
{
struct topology_update_data *update;
unsigned long cpu;
if (!data)
return -EINVAL;
cpu = smp_processor_id();
for (update = data; update; update = update->next) {
Nishanth Aravamudan
committed
int new_nid = update->new_nid;
if (cpu != update->cpu)
continue;
unmap_cpu_from_node(cpu);
Nishanth Aravamudan
committed
map_cpu_to_node(cpu, new_nid);
set_cpu_numa_node(cpu, new_nid);
set_cpu_numa_mem(cpu, local_memory_node(new_nid));
vdso_getcpu_init();
}
return 0;
}
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
static int update_lookup_table(void *data)
{
struct topology_update_data *update;
if (!data)
return -EINVAL;
/*
* Upon topology update, the numa-cpu lookup table needs to be updated
* for all threads in the core, including offline CPUs, to ensure that
* future hotplug operations respect the cpu-to-node associativity
* properly.
*/
for (update = data; update; update = update->next) {
int nid, base, j;
nid = update->new_nid;
base = cpu_first_thread_sibling(update->cpu);
for (j = 0; j < threads_per_core; j++) {
update_numa_cpu_lookup_table(base + j, nid);
}
}
return 0;
}
/*
* Update the node maps and sysfs entries for each cpu whose home node
* has changed. Returns 1 when the topology has changed, and 0 otherwise.
*/
int arch_update_cpu_topology(void)
{
unsigned int cpu, sibling, changed = 0;
struct topology_update_data *updates, *ud;
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
cpumask_t updated_cpus;
struct device *dev;
int weight, new_nid, i = 0;
if (!prrn_enabled && !vphn_enabled)
return 0;
weight = cpumask_weight(&cpu_associativity_changes_mask);
if (!weight)
return 0;
updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
if (!updates)
return 0;
cpumask_clear(&updated_cpus);
for_each_cpu(cpu, &cpu_associativity_changes_mask) {
/*
* If siblings aren't flagged for changes, updates list
* will be too short. Skip on this update and set for next
* update.
*/
if (!cpumask_subset(cpu_sibling_mask(cpu),
&cpu_associativity_changes_mask)) {
pr_info("Sibling bits not set for associativity "
"change, cpu%d\n", cpu);
cpumask_or(&cpu_associativity_changes_mask,
&cpu_associativity_changes_mask,
cpu_sibling_mask(cpu));
cpu = cpu_last_thread_sibling(cpu);
continue;
}
/* Use associativity from first thread for all siblings */
vphn_get_associativity(cpu, associativity);
new_nid = associativity_to_nid(associativity);
if (new_nid < 0 || !node_online(new_nid))
new_nid = first_online_node;
if (new_nid == numa_cpu_lookup_table[cpu]) {
cpumask_andnot(&cpu_associativity_changes_mask,
&cpu_associativity_changes_mask,
cpu_sibling_mask(cpu));
cpu = cpu_last_thread_sibling(cpu);
continue;
}
for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
ud = &updates[i++];
ud->cpu = sibling;
ud->new_nid = new_nid;
ud->old_nid = numa_cpu_lookup_table[sibling];
cpumask_set_cpu(sibling, &updated_cpus);
if (i < weight)
ud->next = &updates[i];
}
cpu = cpu_last_thread_sibling(cpu);
pr_debug("Topology update for the following CPUs:\n");
if (cpumask_weight(&updated_cpus)) {
for (ud = &updates[0]; ud; ud = ud->next) {
pr_debug("cpu %d moving from node %d "
"to %d\n", ud->cpu,
ud->old_nid, ud->new_nid);
}
}
Michael Wang
committed
/*
* In cases where we have nothing to update (because the updates list
* is too short or because the new topology is same as the old one),
* skip invoking update_cpu_topology() via stop-machine(). This is
* necessary (and not just a fast-path optimization) since stop-machine
* can end up electing a random CPU to run update_cpu_topology(), and
* thus trick us into setting up incorrect cpu-node mappings (since
* 'updates' is kzalloc()'ed).
*
* And for the similar reason, we will skip all the following updating.
*/
if (!cpumask_weight(&updated_cpus))
goto out;
stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
/*
* Update the numa-cpu lookup table with the new mappings, even for
* offline CPUs. It is best to perform this update from the stop-
* machine context.
*/
stop_machine(update_lookup_table, &updates[0],
cpumask_of(raw_smp_processor_id()));
for (ud = &updates[0]; ud; ud = ud->next) {
unregister_cpu_under_node(ud->cpu, ud->old_nid);
register_cpu_under_node(ud->cpu, ud->new_nid);
dev = get_cpu_device(ud->cpu);
if (dev)
kobject_uevent(&dev->kobj, KOBJ_CHANGE);
cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
}
Michael Wang
committed
out:
return changed;
}
static void topology_work_fn(struct work_struct *work)
{
rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);
static void topology_schedule_update(void)
{
schedule_work(&topology_work);
}
static void topology_timer_fn(unsigned long ignored)
{
if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
topology_schedule_update();
else if (vphn_enabled) {
if (update_cpu_associativity_changes_mask() > 0)
topology_schedule_update();
reset_topology_timer();
}
}
static struct timer_list topology_timer =
TIMER_INITIALIZER(topology_timer_fn, 0, 0);
static void reset_topology_timer(void)
{
topology_timer.data = 0;
topology_timer.expires = jiffies + 60 * HZ;
mod_timer(&topology_timer, topology_timer.expires);
}
#ifdef CONFIG_SMP
static void stage_topology_update(int core_id)
{
cpumask_or(&cpu_associativity_changes_mask,
&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
reset_topology_timer();
}
static int dt_update_callback(struct notifier_block *nb,
unsigned long action, void *data)
{
struct of_reconfig_data *update = data;
int rc = NOTIFY_DONE;
switch (action) {
case OF_RECONFIG_UPDATE_PROPERTY:
if (!of_prop_cmp(update->dn->type, "cpu") &&
!of_prop_cmp(update->prop->name, "ibm,associativity")) {
u32 core_id;
of_property_read_u32(update->dn, "reg", &core_id);
stage_topology_update(core_id);
rc = NOTIFY_OK;
}
break;
}
return rc;
}
static struct notifier_block dt_update_nb = {
.notifier_call = dt_update_callback,
};
#endif
* Start polling for associativity changes.
*/
int start_topology_update(void)
{
int rc = 0;
if (firmware_has_feature(FW_FEATURE_PRRN)) {
if (!prrn_enabled) {
prrn_enabled = 1;
vphn_enabled = 0;
#ifdef CONFIG_SMP
rc = of_reconfig_notifier_register(&dt_update_nb);
#endif
} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
lppaca_shared_proc(get_lppaca())) {
if (!vphn_enabled) {
prrn_enabled = 0;
vphn_enabled = 1;
setup_cpu_associativity_change_counters();
init_timer_deferrable(&topology_timer);
reset_topology_timer();
}
}
return rc;
}
/*
* Disable polling for VPHN associativity changes.
*/
int stop_topology_update(void)
{
int rc = 0;
if (prrn_enabled) {
prrn_enabled = 0;
#ifdef CONFIG_SMP
rc = of_reconfig_notifier_unregister(&dt_update_nb);
#endif
} else if (vphn_enabled) {
vphn_enabled = 0;
rc = del_timer_sync(&topology_timer);
}
return rc;
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
int prrn_is_enabled(void)
{
return prrn_enabled;
}
static int topology_read(struct seq_file *file, void *v)
{
if (vphn_enabled || prrn_enabled)
seq_puts(file, "on\n");
else
seq_puts(file, "off\n");
return 0;
}
static int topology_open(struct inode *inode, struct file *file)
{
return single_open(file, topology_read, NULL);
}
static ssize_t topology_write(struct file *file, const char __user *buf,
size_t count, loff_t *off)
{
char kbuf[4]; /* "on" or "off" plus null. */
int read_len;
read_len = count < 3 ? count : 3;
if (copy_from_user(kbuf, buf, read_len))
return -EINVAL;
kbuf[read_len] = '\0';
if (!strncmp(kbuf, "on", 2))
start_topology_update();
else if (!strncmp(kbuf, "off", 3))
stop_topology_update();
else
return -EINVAL;
return count;
}
static const struct file_operations topology_ops = {
.read = seq_read,
.write = topology_write,
.open = topology_open,
.release = single_release
};
static int topology_update_init(void)
{
/* Do not poll for changes if disabled at boot */
if (topology_updates_enabled)
start_topology_update();
if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
return -ENOMEM;
return 0;
device_initcall(topology_update_init);
#endif /* CONFIG_PPC_SPLPAR */