Newer
Older
chunk->contig_hint = pcpu_unit_size;
return chunk;
}
/**
Tejun Heo
committed
* pcpu_alloc - the percpu allocator
* @align: alignment of area (max PAGE_SIZE)
Tejun Heo
committed
* @reserved: allocate from the reserved chunk if available
* Allocate percpu area of @size bytes aligned at @align.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
Tejun Heo
committed
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
{
struct pcpu_chunk *chunk;
int slot, off;
if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
WARN(true, "illegal size (%zu) or align (%zu) for "
"percpu allocation\n", size, align);
return NULL;
}
mutex_lock(&pcpu_alloc_mutex);
spin_lock_irq(&pcpu_lock);
Tejun Heo
committed
/* serve reserved allocations from the reserved chunk if available */
if (reserved && pcpu_reserved_chunk) {
chunk = pcpu_reserved_chunk;
if (size > chunk->contig_hint ||
pcpu_extend_area_map(chunk) < 0)
goto fail_unlock;
Tejun Heo
committed
off = pcpu_alloc_area(chunk, size, align);
if (off >= 0)
goto area_found;
goto fail_unlock;
Tejun Heo
committed
}
restart:
Tejun Heo
committed
/* search through normal chunks */
for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
list_for_each_entry(chunk, &pcpu_slot[slot], list) {
if (size > chunk->contig_hint)
continue;
switch (pcpu_extend_area_map(chunk)) {
case 0:
break;
case 1:
goto restart; /* pcpu_lock dropped, restart */
default:
goto fail_unlock;
}
off = pcpu_alloc_area(chunk, size, align);
if (off >= 0)
goto area_found;
}
}
/* hmmm... no space left, create a new chunk */
spin_unlock_irq(&pcpu_lock);
chunk = alloc_pcpu_chunk();
if (!chunk)
goto fail_unlock_mutex;
spin_lock_irq(&pcpu_lock);
pcpu_chunk_relocate(chunk, -1);
goto restart;
spin_unlock_irq(&pcpu_lock);
/* populate, map and clear the area */
if (pcpu_populate_chunk(chunk, off, size)) {
spin_lock_irq(&pcpu_lock);
goto fail_unlock;
mutex_unlock(&pcpu_alloc_mutex);
return __addr_to_pcpu_ptr(chunk->vm->addr + off);
fail_unlock:
spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
mutex_unlock(&pcpu_alloc_mutex);
return NULL;
Tejun Heo
committed
/**
* __alloc_percpu - allocate dynamic percpu area
* @size: size of area to allocate in bytes
* @align: alignment of area (max PAGE_SIZE)
*
* Allocate percpu area of @size bytes aligned at @align. Might
* sleep. Might trigger writeouts.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
Tejun Heo
committed
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
void *__alloc_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, false);
}
EXPORT_SYMBOL_GPL(__alloc_percpu);
Tejun Heo
committed
/**
* __alloc_reserved_percpu - allocate reserved percpu area
* @size: size of area to allocate in bytes
* @align: alignment of area (max PAGE_SIZE)
*
* Allocate percpu area of @size bytes aligned at @align from reserved
* percpu area if arch has set it up; otherwise, allocation is served
* from the same dynamic area. Might sleep. Might trigger writeouts.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
Tejun Heo
committed
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
void *__alloc_reserved_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, true);
}
/**
* pcpu_reclaim - reclaim fully free chunks, workqueue function
* @work: unused
*
* Reclaim all fully free chunks except for the first one.
*
* CONTEXT:
* workqueue context.
*/
static void pcpu_reclaim(struct work_struct *work)
LIST_HEAD(todo);
struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
struct pcpu_chunk *chunk, *next;
mutex_lock(&pcpu_alloc_mutex);
spin_lock_irq(&pcpu_lock);
list_for_each_entry_safe(chunk, next, head, list) {
WARN_ON(chunk->immutable);
/* spare the first one */
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
continue;
list_move(&chunk->list, &todo);
}
spin_unlock_irq(&pcpu_lock);
mutex_unlock(&pcpu_alloc_mutex);
list_for_each_entry_safe(chunk, next, &todo, list) {
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
free_pcpu_chunk(chunk);
}
}
/**
* free_percpu - free percpu area
* @ptr: pointer to area to free
*
* Free percpu area @ptr.
*
* CONTEXT:
* Can be called from atomic context.
*/
void free_percpu(void *ptr)
{
void *addr = __pcpu_ptr_to_addr(ptr);
struct pcpu_chunk *chunk;
unsigned long flags;
int off;
if (!ptr)
return;
spin_lock_irqsave(&pcpu_lock, flags);
chunk = pcpu_chunk_addr_search(addr);
off = addr - chunk->vm->addr;
pcpu_free_area(chunk, off);
/* if there are more than one fully free chunks, wake up grim reaper */
if (chunk->free_size == pcpu_unit_size) {
struct pcpu_chunk *pos;
list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
schedule_work(&pcpu_reclaim_work);
spin_unlock_irqrestore(&pcpu_lock, flags);
}
EXPORT_SYMBOL_GPL(free_percpu);
/**
* pcpu_setup_first_chunk - initialize the first percpu chunk
* @static_size: the size of static percpu area in bytes
* @reserved_size: the size of reserved percpu area in bytes, 0 for none
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
* @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
* @base_addr: mapped address
*
* Initialize the first percpu chunk which contains the kernel static
* perpcu area. This function is to be called from arch percpu area
Tejun Heo
committed
* @reserved_size, if non-zero, specifies the amount of bytes to
* reserve after the static area in the first chunk. This reserves
* the first chunk such that it's available only through reserved
* percpu allocation. This is primarily used to serve module percpu
* static areas on architectures where the addressing model has
* limited offset range for symbol relocations to guarantee module
* percpu symbols fall inside the relocatable range.
*
* @dyn_size, if non-negative, determines the number of bytes
* available for dynamic allocation in the first chunk. Specifying
* non-negative value makes percpu leave alone the area beyond
* @static_size + @reserved_size + @dyn_size.
*
* @unit_size specifies unit size and must be aligned to PAGE_SIZE and
* equal to or larger than @static_size + @reserved_size + if
* non-negative, @dyn_size.
* The caller should have mapped the first chunk at @base_addr and
* copied static data to each unit.
Tejun Heo
committed
* If the first chunk ends up with both reserved and dynamic areas, it
* is served by two chunks - one to serve the core static and reserved
* areas and the other for the dynamic area. They share the same vm
* and page map but uses different area allocation map to stay away
* from each other. The latter chunk is circulated in the chunk slots
* and available for dynamic allocation like any other chunks.
*
* RETURNS:
* The determined pcpu_unit_size which can be used to initialize
* percpu access.
*/
size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
ssize_t dyn_size, size_t unit_size,
void *base_addr)
static struct vm_struct first_vm;
Tejun Heo
committed
static int smap[2], dmap[2];
size_t size_sum = static_size + reserved_size +
(dyn_size >= 0 ? dyn_size : 0);
Tejun Heo
committed
struct pcpu_chunk *schunk, *dchunk = NULL;
/* santiy checks */
Tejun Heo
committed
BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
BUG_ON(!static_size);
BUG_ON(!base_addr);
BUG_ON(unit_size < size_sum);
BUG_ON(unit_size & ~PAGE_MASK);
BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
pcpu_unit_pages = unit_size >> PAGE_SHIFT;
pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
if (dyn_size < 0)
Tejun Heo
committed
dyn_size = pcpu_unit_size - static_size - reserved_size;
first_vm.flags = VM_ALLOC;
first_vm.size = pcpu_chunk_size;
first_vm.addr = base_addr;
/*
* Allocate chunk slots. The additional last slot is for
* empty chunks.
*/
pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
for (i = 0; i < pcpu_nr_slots; i++)
INIT_LIST_HEAD(&pcpu_slot[i]);
Tejun Heo
committed
/*
* Initialize static chunk. If reserved_size is zero, the
* static chunk covers static area + dynamic allocation area
* in the first chunk. If reserved_size is not zero, it
* covers static area + reserved area (mostly used for module
* static percpu allocation).
*/
schunk = alloc_bootmem(pcpu_chunk_struct_size);
INIT_LIST_HEAD(&schunk->list);
schunk->vm = &first_vm;
schunk->map = smap;
schunk->map_alloc = ARRAY_SIZE(smap);
bitmap_fill(schunk->populated, pcpu_unit_pages);
Tejun Heo
committed
if (reserved_size) {
schunk->free_size = reserved_size;
pcpu_reserved_chunk = schunk;
pcpu_reserved_chunk_limit = static_size + reserved_size;
Tejun Heo
committed
} else {
schunk->free_size = dyn_size;
dyn_size = 0; /* dynamic area covered */
}
schunk->contig_hint = schunk->free_size;
schunk->map[schunk->map_used++] = -static_size;
if (schunk->free_size)
schunk->map[schunk->map_used++] = schunk->free_size;
Tejun Heo
committed
/* init dynamic chunk if necessary */
if (dyn_size) {
dchunk = alloc_bootmem(pcpu_chunk_struct_size);
Tejun Heo
committed
INIT_LIST_HEAD(&dchunk->list);
dchunk->vm = &first_vm;
dchunk->map = dmap;
dchunk->map_alloc = ARRAY_SIZE(dmap);
bitmap_fill(dchunk->populated, pcpu_unit_pages);
Tejun Heo
committed
dchunk->contig_hint = dchunk->free_size = dyn_size;
dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
dchunk->map[dchunk->map_used++] = dchunk->free_size;
}
/* link the first chunk in */
pcpu_first_chunk = dchunk ?: schunk;
pcpu_chunk_relocate(pcpu_first_chunk, -1);
pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
return pcpu_unit_size;
}
static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
ssize_t *dyn_sizep)
{
size_t size_sum;
size_sum = PFN_ALIGN(static_size + reserved_size +
(*dyn_sizep >= 0 ? *dyn_sizep : 0));
if (*dyn_sizep != 0)
*dyn_sizep = size_sum - static_size - reserved_size;
return size_sum;
}
/**
* pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
* @static_size: the size of static percpu area in bytes
* @reserved_size: the size of reserved percpu area in bytes
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
*
* This is a helper to ease setting up embedded first percpu chunk and
* can be called where pcpu_setup_first_chunk() is expected.
*
* If this function is used to setup the first chunk, it is allocated
* as a contiguous area using bootmem allocator and used as-is without
* being mapped into vmalloc area. This enables the first chunk to
* piggy back on the linear physical mapping which often uses larger
* page size.
*
* When @dyn_size is positive, dynamic area might be larger than
* specified to fill page alignment. When @dyn_size is auto,
* @dyn_size is just big enough to fill page alignment after static
* and reserved areas.
*
* If the needed size is smaller than the minimum or specified unit
* size, the leftover is returned to the bootmem allocator.
*
* RETURNS:
* The determined pcpu_unit_size which can be used to initialize
* percpu access on success, -errno on failure.
*/
ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
size_t size_sum, unit_size, chunk_size;
void *base;
unsigned int cpu;
/* determine parameters and allocate */
size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
chunk_size = unit_size * num_possible_cpus();
base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
__pa(MAX_DMA_ADDRESS));
if (!base) {
pr_warning("PERCPU: failed to allocate %zu bytes for "
"embedding\n", chunk_size);
/* return the leftover and copy */
for_each_possible_cpu(cpu) {
free_bootmem(__pa(ptr + size_sum), unit_size - size_sum);
memcpy(ptr, __per_cpu_load, static_size);
}
/* we're ready, commit */
pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
size_sum >> PAGE_SHIFT, base, static_size);
return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
unit_size, base);
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
}
/**
* pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
* @static_size: the size of static percpu area in bytes
* @reserved_size: the size of reserved percpu area in bytes
* @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
* @free_fn: funtion to free percpu page, always called with PAGE_SIZE
* @populate_pte_fn: function to populate pte
*
* This is a helper to ease setting up embedded first percpu chunk and
* can be called where pcpu_setup_first_chunk() is expected.
*
* This is the basic allocator. Static percpu area is allocated
* page-by-page into vmalloc area.
*
* RETURNS:
* The determined pcpu_unit_size which can be used to initialize
* percpu access on success, -errno on failure.
*/
ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
pcpu_fc_alloc_fn_t alloc_fn,
pcpu_fc_free_fn_t free_fn,
pcpu_fc_populate_pte_fn_t populate_pte_fn)
{
static struct vm_struct vm;
unsigned int cpu;
int i, j;
ssize_t ret;
unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
PCPU_MIN_UNIT_SIZE));
/* unaligned allocations can't be freed, round up to page size */
pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
sizeof(pages[0]));
pages = alloc_bootmem(pages_size);
j = 0;
for_each_possible_cpu(cpu)
void *ptr;
ptr = alloc_fn(cpu, PAGE_SIZE);
if (!ptr) {
pr_warning("PERCPU: failed to allocate "
"4k page for cpu%u\n", cpu);
goto enomem;
}
/* allocate vm area, map the pages and copy static data */
vm.flags = VM_ALLOC;
vm.size = num_possible_cpus() * unit_pages << PAGE_SHIFT;
vm_area_register_early(&vm, PAGE_SIZE);
for_each_possible_cpu(cpu) {
unsigned long unit_addr = (unsigned long)vm.addr +
populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
/* pte already populated, the following shouldn't fail */
ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
unit_pages);
if (ret < 0)
panic("failed to map percpu area, err=%zd\n", ret);
/*
* FIXME: Archs with virtual cache should flush local
* cache for the linear mapping here - something
* equivalent to flush_cache_vmap() on the local cpu.
* flush_cache_vmap() can't be used as most supporting
* data structures are not set up yet.
*/
/* copy static data */
memcpy((void *)unit_addr, __per_cpu_load, static_size);
}
pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
unit_pages << PAGE_SHIFT, vm.addr);
goto out_free_ar;
enomem:
while (--j >= 0)
free_fn(page_address(pages[j]), PAGE_SIZE);
ret = -ENOMEM;
out_free_ar:
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
/*
* Large page remapping first chunk setup helper
*/
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pcpul_ent {
unsigned int cpu;
void *ptr;
};
static size_t pcpul_size;
static size_t pcpul_unit_size;
static struct pcpul_ent *pcpul_map;
static struct vm_struct pcpul_vm;
/**
* pcpu_lpage_first_chunk - remap the first percpu chunk using large page
* @static_size: the size of static percpu area in bytes
* @reserved_size: the size of reserved percpu area in bytes
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
* @lpage_size: the size of a large page
* @alloc_fn: function to allocate percpu lpage, always called with lpage_size
* @free_fn: function to free percpu memory, @size <= lpage_size
* @map_fn: function to map percpu lpage, always called with lpage_size
*
* This allocator uses large page as unit. A large page is allocated
* for each cpu and each is remapped into vmalloc area using large
* page mapping. As large page can be quite large, only part of it is
* used for the first chunk. Unused part is returned to the bootmem
* allocator.
*
* So, the large pages are mapped twice - once to the physical mapping
* and to the vmalloc area for the first percpu chunk. The double
* mapping does add one more large TLB entry pressure but still is
* much better than only using 4k mappings while still being NUMA
* friendly.
*
* RETURNS:
* The determined pcpu_unit_size which can be used to initialize
* percpu access on success, -errno on failure.
*/
ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
ssize_t dyn_size, size_t lpage_size,
pcpu_fc_alloc_fn_t alloc_fn,
pcpu_fc_free_fn_t free_fn,
pcpu_fc_map_fn_t map_fn)
{
size_t size_sum;
size_t map_size;
unsigned int cpu;
int i, j;
ssize_t ret;
/*
* Currently supports only single page. Supporting multiple
* pages won't be too difficult if it ever becomes necessary.
*/
size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
pcpul_unit_size = lpage_size;
pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
if (pcpul_size > pcpul_unit_size) {
pr_warning("PERCPU: static data is larger than large page, "
"can't use large page\n");
return -EINVAL;
}
/* allocate pointer array and alloc large pages */
map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
pcpul_map = alloc_bootmem(map_size);
for_each_possible_cpu(cpu) {
void *ptr;
ptr = alloc_fn(cpu, lpage_size);
if (!ptr) {
pr_warning("PERCPU: failed to allocate large page "
"for cpu%u\n", cpu);
goto enomem;
}
/*
* Only use pcpul_size bytes and give back the rest.
*
* Ingo: The lpage_size up-rounding bootmem is needed
* to make sure the partial lpage is still fully RAM -
* it's not well-specified to have a incompatible area
* (unmapped RAM, device memory, etc.) in that hole.
*/
free_fn(ptr + pcpul_size, lpage_size - pcpul_size);
pcpul_map[cpu].cpu = cpu;
pcpul_map[cpu].ptr = ptr;
memcpy(ptr, __per_cpu_load, static_size);
}
/* allocate address and map */
pcpul_vm.flags = VM_ALLOC;
pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
vm_area_register_early(&pcpul_vm, pcpul_unit_size);
for_each_possible_cpu(cpu)
map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
pcpul_vm.addr + cpu * pcpul_unit_size);
/* we're ready, commit */
pr_info("PERCPU: Remapped at %p with large pages, static data "
"%zu bytes\n", pcpul_vm.addr, static_size);
ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
pcpul_unit_size, pcpul_vm.addr);
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
/* sort pcpul_map array for pcpu_lpage_remapped() */
for (i = 0; i < num_possible_cpus() - 1; i++)
for (j = i + 1; j < num_possible_cpus(); j++)
if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
struct pcpul_ent tmp = pcpul_map[i];
pcpul_map[i] = pcpul_map[j];
pcpul_map[j] = tmp;
}
return ret;
enomem:
for_each_possible_cpu(cpu)
if (pcpul_map[cpu].ptr)
free_fn(pcpul_map[cpu].ptr, pcpul_size);
free_bootmem(__pa(pcpul_map), map_size);
return -ENOMEM;
}
/**
* pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
* @kaddr: the kernel address in question
*
* Determine whether @kaddr falls in the pcpul recycled area. This is
* used by pageattr to detect VM aliases and break up the pcpu large
* page mapping such that the same physical page is not mapped under
* different attributes.
*
* The recycled area is always at the tail of a partially used large
* page.
*
* RETURNS:
* Address of corresponding remapped pcpu address if match is found;
* otherwise, NULL.
*/
void *pcpu_lpage_remapped(void *kaddr)
{
unsigned long unit_mask = pcpul_unit_size - 1;
void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
unsigned long offset = (unsigned long)kaddr & unit_mask;
int left = 0, right = num_possible_cpus() - 1;
int pos;
/* pcpul in use at all? */
if (!pcpul_map)
return NULL;
/* okay, perform binary search */
while (left <= right) {
pos = (left + right) / 2;
if (pcpul_map[pos].ptr < lpage_addr)
left = pos + 1;
else if (pcpul_map[pos].ptr > lpage_addr)
right = pos - 1;
else {
/* it shouldn't be in the area for the first chunk */
WARN_ON(offset < pcpul_size);
return pcpul_vm.addr +
pcpul_map[pos].cpu * pcpul_unit_size + offset;
}
}
return NULL;
}
#endif
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
/*
* Generic percpu area setup.
*
* The embedding helper is used because its behavior closely resembles
* the original non-dynamic generic percpu area setup. This is
* important because many archs have addressing restrictions and might
* fail if the percpu area is located far away from the previous
* location. As an added bonus, in non-NUMA cases, embedding is
* generally a good idea TLB-wise because percpu area can piggy back
* on the physical linear memory mapping which uses large page
* mappings on applicable archs.
*/
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);
void __init setup_per_cpu_areas(void)
{
size_t static_size = __per_cpu_end - __per_cpu_start;
ssize_t unit_size;
unsigned long delta;
unsigned int cpu;
/*
* Always reserve area for module percpu variables. That's
* what the legacy allocator did.
*/
unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
PERCPU_DYNAMIC_RESERVE);
if (unit_size < 0)
panic("Failed to initialized percpu areas.");
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu)
__per_cpu_offset[cpu] = delta + cpu * unit_size;
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */