- Oct 31, 2018
-
-
Mike Rapoport authored
Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by:
Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by:
Stephen Rothwell <sfr@canb.auug.org.au> Acked-by:
Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Oct 19, 2018
-
-
Waiman Long authored
It was found that when debug_locks was turned off because of a problem found by the lockdep code, the system performance could drop quite significantly when the lock_stat code was also configured into the kernel. For instance, parallel kernel build time on a 4-socket x86-64 server nearly doubled. Further analysis into the cause of the slowdown traced back to the frequent call to debug_locks_off() from the __lock_acquired() function probably due to some inconsistent lockdep states with debug_locks off. The debug_locks_off() function did an unconditional atomic xchg to write a 0 value into debug_locks which had already been set to 0. This led to severe cacheline contention in the cacheline that held debug_locks. As debug_locks is being referenced in quite a few different places in the kernel, this greatly slow down the system performance. To prevent that trashing of debug_locks cacheline, lock_acquired() and lock_contended() now checks the state of debug_locks before proceeding. The debug_locks_off() function is also modified to check debug_locks before calling __debug_locks_off(). Signed-off-by:
Waiman Long <longman@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1539913518-15598-1-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Oct 17, 2018
-
-
Waiman Long authored
The qspinlock code supports up to 4 levels of slowpath nesting using four per-CPU mcs_spinlock structures. For 64-bit architectures, they fit nicely in one 64-byte cacheline. For para-virtualized (PV) qspinlocks it needs to store more information in the per-CPU node structure than there is space for. It uses a trick to use a second cacheline to hold the extra information that it needs. So PV qspinlock needs to access two extra cachelines for its information whereas the native qspinlock code only needs one extra cacheline. Freshly added counter profiling of the qspinlock code, however, revealed that it was very rare to use more than two levels of slowpath nesting. So it doesn't make sense to penalize PV qspinlock code in order to have four mcs_spinlock structures in the same cacheline to optimize for a case in the native qspinlock code that rarely happens. Extend the per-CPU node structure to have two more long words when PV qspinlock locks are configured to hold the extra data that it needs. As a result, the PV qspinlock code will enjoy the same benefit of using just one extra cacheline like the native counterpart, for most cases. [ mingo: Minor changelog edits. ] Signed-off-by:
Waiman Long <longman@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1539697507-28084-2-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
Queued spinlock supports up to 4 levels of lock slowpath nesting - user context, soft IRQ, hard IRQ and NMI. However, we are not sure how often the nesting happens. So add 3 more per-CPU stat counters to track the number of instances where nesting index goes to 1, 2 and 3 respectively. On a dual-socket 64-core 128-thread Zen server, the following were the new stat counter values under different circumstances: State slowpath index1 index2 index3 ----- -------- ------ ------ ------- After bootup 1,012,150 82 0 0 After parallel build + perf-top 125,195,009 82 0 0 So the chance of having more than 2 levels of nesting is extremely low. [ mingo: Minor changelog edits. ] Signed-off-by:
Waiman Long <longman@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1539697507-28084-1-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Oct 16, 2018
-
-
Peter Zijlstra authored
On x86 we cannot do fetch_or() with a single instruction and thus end up using a cmpxchg loop, this reduces determinism. Replace the fetch_or() with a composite operation: tas-pending + load. Using two instructions of course opens a window we previously did not have. Consider the scenario: CPU0 CPU1 CPU2 1) lock trylock -> (0,0,1) 2) lock trylock /* fail */ 3) unlock -> (0,0,0) 4) lock trylock -> (0,0,1) 5) tas-pending -> (0,1,1) load-val <- (0,1,0) from 3 6) clear-pending-set-locked -> (0,0,1) FAIL: _2_ owners where 5) is our new composite operation. When we consider each part of the qspinlock state as a separate variable (as we can when _Q_PENDING_BITS == 8) then the above is entirely possible, because tas-pending will only RmW the pending byte, so the later load is able to observe prior tail and lock state (but not earlier than its own trylock, which operates on the whole word, due to coherence). To avoid this we need 2 things: - the load must come after the tas-pending (obviously, otherwise it can trivially observe prior state). - the tas-pending must be a full word RmW instruction, it cannot be an XCHGB for example, such that we cannot observe other state prior to setting pending. On x86 we can realize this by using "LOCK BTS m32, r32" for tas-pending followed by a regular load. Note that observing later state is not a problem: - if we fail to observe a later unlock, we'll simply spin-wait for that store to become visible. - if we observe a later xchg_tail(), there is no difference from that xchg_tail() having taken place before the tas-pending. Suggested-by:
Will Deacon <will.deacon@arm.com> Reported-by:
Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by:
Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: andrea.parri@amarulasolutions.com Cc: longman@redhat.com Fixes: 59fb586b ("locking/qspinlock: Remove unbounded cmpxchg() loop from locking slowpath") Link: https://lkml.kernel.org/r/20181003130957.183726335@infradead.org Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Peter Zijlstra authored
While working my way through the code again; I felt the comments could use help. Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by:
Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: andrea.parri@amarulasolutions.com Cc: longman@redhat.com Link: https://lkml.kernel.org/r/20181003130257.156322446@infradead.org Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Peter Zijlstra authored
Flip the branch condition after atomic_fetch_or_acquire(_Q_PENDING_VAL) such that we loose the indent. This also result in a more natural code flow IMO. Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by:
Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: andrea.parri@amarulasolutions.com Cc: longman@redhat.com Link: https://lkml.kernel.org/r/20181003130257.156322446@infradead.org Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
Remove the duplicated 'lock_class_ops' percpu array that is not used anywhere. Signed-off-by:
Waiman Long <longman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Fixes: 8ca2b56c ("locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y") Link: http://lkml.kernel.org/r/1539380547-16726-1-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Oct 09, 2018
-
-
Waiman Long authored
A sizable portion of the CPU cycles spent on the __lock_acquire() is used up by the atomic increment of the class->ops stat counter. By taking it out from the lock_class structure and changing it to a per-cpu per-lock-class counter, we can reduce the amount of cacheline contention on the class structure when multiple CPUs are trying to acquire locks of the same class simultaneously. To limit the increase in memory consumption because of the percpu nature of that counter, it is now put back under the CONFIG_DEBUG_LOCKDEP config option. So the memory consumption increase will only occur if CONFIG_DEBUG_LOCKDEP is defined. The lock_class structure, however, is reduced in size by 16 bytes on 64-bit archs after ops removal and a minor restructuring of the fields. This patch also fixes a bug in the increment code as the counter is of the 'unsigned long' type, but atomic_inc() was used to increment it. Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/d66681f3-8781-9793-1dcf-2436a284550b@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Oct 03, 2018
-
-
Guenter Roeck authored
If CONFIG_WW_MUTEX_SELFTEST=y is enabled, booting an image in an arm64 virtual machine results in the following traceback if 8 CPUs are enabled: DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current) WARNING: CPU: 2 PID: 537 at kernel/locking/mutex.c:1033 __mutex_unlock_slowpath+0x1a8/0x2e0 ... Call trace: __mutex_unlock_slowpath() ww_mutex_unlock() test_cycle_work() process_one_work() worker_thread() kthread() ret_from_fork() If requesting b_mutex fails with -EDEADLK, the error variable is reassigned to the return value from calling ww_mutex_lock on a_mutex again. If this call fails, a_mutex is not locked. It is, however, unconditionally unlocked subsequently, causing the reported warning. Fix the problem by using two error variables. With this change, the selftest still fails as follows: cyclic deadlock not resolved, ret[7/8] = -35 However, the traceback is gone. Signed-off-by:
Guenter Roeck <linux@roeck-us.net> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Fixes: d1b42b80 ("locking/ww_mutex: Add kselftests for resolving ww_mutex cyclic deadlocks") Link: http://lkml.kernel.org/r/1538516929-9734-1-git-send-email-linux@roeck-us.net Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
When __lock_release() is called, the most likely unlock scenario is on the innermost lock in the chain. In this case, we can skip some of the checks and provide a faster path to completion. Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1538511560-10090-4-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
The static __lock_acquire() function has only two callers: 1) lock_acquire() 2) reacquire_held_locks() In lock_acquire(), raw_local_irq_save() is called beforehand. So IRQs must have been disabled. So the check: DEBUG_LOCKS_WARN_ON(!irqs_disabled()) is kind of redundant in this case. So move the above check to reacquire_held_locks() to eliminate redundant code in the lock_acquire() path. Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1538511560-10090-3-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
The inline function add_chain_cache_classes() is defined, but has no caller. Just remove it. Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1538511560-10090-2-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Sep 11, 2018
-
-
Steven Rostedt (VMware) authored
Merging v4.14.68 into v4.14-rt I tripped over a conflict in the rtmutex.c code. There I found that we had: #ifdef CONFIG_DEBUG_LOCK_ALLOC [..] #endif #ifndef CONFIG_DEBUG_LOCK_ALLOC [..] #endif Really this should be: #ifdef CONFIG_DEBUG_LOCK_ALLOC [..] #else [..] #endif This cleans up that logic. Signed-off-by:
Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Rosin <peda@axentia.se> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180910214638.55926030@vmware.local.home Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Sep 10, 2018
-
-
Colin Ian King authored
Trivial fix to spelling mistake in pr_err() error message Signed-off-by:
Colin Ian King <colin.king@canonical.com> Acked-by:
Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kernel-janitors@vger.kernel.org Link: http://lkml.kernel.org/r/20180824112235.8842-1-colin.king@canonical.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Ben Hutchings authored
Commit: c3bc8fd6 ("tracing: Centralize preemptirq tracepoints and unify their usage") added the inclusion of <trace/events/preemptirq.h>. liblockdep doesn't have a stub version of that header so now fails to build. However, commit: bff1b208 ("tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage"") removed the use of functions declared in that header. So delete the #include. Signed-off-by:
Ben Hutchings <ben@decadent.org.uk> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <alexander.levin@verizon.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Fixes: bff1b208 ("tracing: Partial revert of "tracing: Centralize ...") Fixes: c3bc8fd6 ("tracing: Centralize preemptirq tracepoints ...") Link: http://lkml.kernel.org/r/20180828203315.GD18030@decadent.org.uk Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
Currently, when a reader acquires a lock, it only sets the RWSEM_READER_OWNED bit in the owner field. The other bits are simply not used. When debugging hanging cases involving rwsems and readers, the owner value does not provide much useful information at all. This patch modifies the current behavior to always store the task_struct pointer of the last rwsem-acquiring reader in a reader-owned rwsem. This may be useful in debugging rwsem hanging cases especially if only one reader is involved. However, the task in the owner field may not the real owner or one of the real owners at all when the owner value is examined, for example, in a crash dump. So it is just an additional hint about the past history. If CONFIG_DEBUG_RWSEMS=y is enabled, the owner field will be checked at unlock time too to make sure the task pointer value is valid. That does have a slight performance cost and so is only enabled as part of that debug option. From the performance point of view, it is expected that the changes shouldn't have any noticeable performance impact. A rwsem microbenchmark (with 48 worker threads and 1:1 reader/writer ratio) was ran on a 2-socket 24-core 48-thread Haswell system. The locking rates on a 4.19-rc1 based kernel were as follows: 1) Unpatched kernel: 543.3 kops/s 2) Patched kernel: 549.2 kops/s 3) Patched kernel (CONFIG_DEBUG_RWSEMS on): 546.6 kops/s There was actually a slight increase in performance (1.1%) in this particular case. Maybe it was caused by the elimination of a branch or just a testing noise. Turning on the CONFIG_DEBUG_RWSEMS option also had less than the expected impact on performance. The least significant 2 bits of the owner value are now used to designate the rwsem is readers owned and the owners are anonymous. Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1536265114-10842-1-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
It was discovered that a constant stream of readers with occassional writers pounding on a rwsem may cause many of the readers to enter the slowpath unnecessarily thus increasing latency and lowering performance. In the current code, a reader entering the slowpath critical section will unconditionally set the WAITING_BIAS, if not set yet, and clear its active count even if no one is in the wait queue and no writer is present. This causes some incoming readers to observe the presence of waiters in the wait queue and hence have to go into the slowpath themselves. With sufficient numbers of readers and a relatively short lock hold time, the WAITING_BIAS may be repeatedly turned on and off and a substantial portion of the readers will go into the slowpath sustaining a rather long queue in the wait queue spinlock and repeated WAITING_BIAS on/off cycle until the logjam is broken opportunistically. To avoid this situation from happening, an additional check is added to detect the special case that the reader in the critical section is the only one in the wait queue and no writer is present. When that happens, it can just exit the slowpath and return immediately as its active count has already been set in the lock. Other incoming readers won't observe the presence of waiters and so will not be forced into the slowpath. The issue was found in a customer site where they had an application that pounded on the pread64 syscalls heavily on an XFS filesystem. The application was run in a recent 4-socket boxes with a lot of CPUs. They saw significant spinlock contention in the rwsem_down_read_failed() call. With this patch applied, the system CPU usage went down from 85% to 57%, and the spinlock contention in the pread64 syscalls was gone. Signed-off-by:
Waiman Long <longman@redhat.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by:
Davidlohr Bueso <dbueso@suse.de> Acked-by:
Will Deacon <will.deacon@arm.com> Cc: Joe Mario <jmario@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1532459425-19204-1-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Thomas Hellstrom authored
The following commit: 08295b3b ("Implement an algorithm choice for Wound-Wait mutexes") introduced a reference in the documentation to a function that was removed in an earlier commit. It also forgot to remove a call to debug_mutex_add_waiter() which is now unconditionally called by __mutex_add_waiter(). Fix those bugs. Signed-off-by:
Thomas Hellstrom <thellstrom@vmware.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Fixes: 08295b3b ("Implement an algorithm choice for Wound-Wait mutexes") Link: http://lkml.kernel.org/r/20180903140708.2401-1-thellstrom@vmware.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Aug 10, 2018
-
-
Steven Rostedt (VMware) authored
Joel Fernandes created a nice patch that cleaned up the duplicate hooks used by lockdep and irqsoff latency tracer. It made both use tracepoints. But it caused lockdep to trigger several false positives. We have not figured out why yet, but removing lockdep from using the trace event hooks and just call its helper functions directly (like it use to), makes the problem go away. This is a partial revert of the clean up patch c3bc8fd6 ("tracing: Centralize preemptirq tracepoints and unify their usage") that adds direct calls for lockdep, but also keeps most of the clean up done to get rid of the horrible preprocessor if statements. Link: http://lkml.kernel.org/r/20180806155058.5ee875f4@gandalf.local.home Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by:
Joel Fernandes (Google) <joel@joelfernandes.org> Fixes: c3bc8fd6 ("tracing: Centralize preemptirq tracepoints and unify their usage") Signed-off-by:
Steven Rostedt (VMware) <rostedt@goodmis.org>
-
- Jul 31, 2018
-
-
Joel Fernandes (Google) authored
This patch detaches the preemptirq tracepoints from the tracers and keeps it separate. Advantages: * Lockdep and irqsoff event can now run in parallel since they no longer have their own calls. * This unifies the usecase of adding hooks to an irqsoff and irqson event, and a preemptoff and preempton event. 3 users of the events exist: - Lockdep - irqsoff and preemptoff tracers - irqs and preempt trace events The unification cleans up several ifdefs and makes the code in preempt tracer and irqsoff tracers simpler. It gets rid of all the horrific ifdeferry around PROVE_LOCKING and makes configuration of the different users of the tracepoints more easy and understandable. It also gets rid of the time_* function calls from the lockdep hooks used to call into the preemptirq tracer which is not needed anymore. The negative delta in lines of code in this patch is quite large too. In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS as a single point for registering probes onto the tracepoints. With this, the web of config options for preempt/irq toggle tracepoints and its users becomes: PREEMPT_TRACER PREEMPTIRQ_EVENTS IRQSOFF_TRACER PROVE_LOCKING | | \ | | \ (selects) / \ \ (selects) / TRACE_PREEMPT_TOGGLE ----> TRACE_IRQFLAGS \ / \ (depends on) / PREEMPTIRQ_TRACEPOINTS Other than the performance tests mentioned in the previous patch, I also ran the locking API test suite. I verified that all tests cases are passing. I also injected issues by not registering lockdep probes onto the tracepoints and I see failures to confirm that the probes are indeed working. This series + lockdep probes not registered (just to inject errors): [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12:FAILED|FAILED| ok | [ 0.000000] sirq-safe-A => hirqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | With this series + lockdep probes registered, all locking tests pass: [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.org Acked-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by:
Namhyung Kim <namhyung@kernel.org> Signed-off-by:
Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by:
Steven Rostedt (VMware) <rostedt@goodmis.org>
-
- Jul 30, 2018
-
-
Joel Fernandes (Google) authored
get_cpu_var disables preemption which has the potential to call into the preemption disable trace points causing some complications. There's also no need to disable preemption in uses of get_lock_stats anyway since preempt is already disabled. So lets simplify the code. Link: http://lkml.kernel.org/r/20180730222423.196630-2-joel@joelfernandes.org Suggested-by:
Peter Zijlstra <peterz@infradead.org> Acked-by:
Peter Zijlstra <peterz@infradead.org> Signed-off-by:
Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by:
Steven Rostedt (VMware) <rostedt@goodmis.org>
-
- Jul 25, 2018
-
-
Peter Rosin authored
Needed for annotating rt_mutex locks. Tested-by:
John Sperbeck <jsperbeck@google.com> Signed-off-by:
Peter Rosin <peda@axentia.se> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Deepa Dinamani <deepadinamani@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Chang <dpf@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Wolfram Sang <wsa@the-dreams.de> Link: http://lkml.kernel.org/r/20180720083914.1950-2-peda@axentia.se Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Jul 03, 2018
-
-
Thomas Hellstrom authored
The current Wound-Wait mutex algorithm is actually not Wound-Wait but Wait-Die. Implement also Wound-Wait as a per-ww-class choice. Wound-Wait is, contrary to Wait-Die a preemptive algorithm and is known to generate fewer backoffs. Testing reveals that this is true if the number of simultaneous contending transactions is small. As the number of simultaneous contending threads increases, Wait-Wound becomes inferior to Wait-Die in terms of elapsed time. Possibly due to the larger number of held locks of sleeping transactions. Update documentation and callers. Timings using git://people.freedesktop.org/~thomash/ww_mutex_test tag patch-18-06-15 Each thread runs 100000 batches of lock / unlock 800 ww mutexes randomly chosen out of 100000. Four core Intel x86_64: Algorithm #threads Rollbacks time Wound-Wait 4 ~100 ~17s. Wait-Die 4 ~150000 ~19s. Wound-Wait 16 ~360000 ~109s. Wait-Die 16 ~450000 ~82s. Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: David Airlie <airlied@linux.ie> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-doc@vger.kernel.org Cc: linux-media@vger.kernel.org Cc: linaro-mm-sig@lists.linaro.org Co-authored-by:
Peter Zijlstra <peterz@infradead.org> Signed-off-by:
Thomas Hellstrom <thellstrom@vmware.com> Acked-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by:
Ingo Molnar <mingo@kernel.org>
-
Peter Ziljstra authored
Make the WW mutex code more readable by adding comments, splitting up functions and pointing out that we're actually using the Wait-Die algorithm. Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: David Airlie <airlied@linux.ie> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-doc@vger.kernel.org Cc: linux-media@vger.kernel.org Cc: linaro-mm-sig@lists.linaro.org Co-authored-by:
Thomas Hellstrom <thellstrom@vmware.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by:
Thomas Hellstrom <thellstrom@vmware.com> Acked-by:
Ingo Molnar <mingo@kernel.org>
-
- Jun 25, 2018
-
-
Paul E. McKenney authored
This commit adds "#define pr_fmt(fmt) fmt" to the torture-test files in order to keep the current dmesg format. Once Joe's commits have hit mainline, these definitions will be changed in order to automatically generate the dmesg line prefix that the scripts expect. This will have the beneficial side-effect of allowing printk() formats to be used more widely and of shortening some pr_*() lines. Signed-off-by:
Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Joe Perches <joe@perches.com>
-
Paul E. McKenney authored
Some bugs reproduce quickly only at high CPU-hotplug rates, so the rcutorture TREE03 scenario now has only 200 milliseconds spacing between CPU-hotplug operations. At this rate, the torture-test pair of console messages per operation becomes a bit voluminous. This commit therefore converts the torture-test set of "verbose" kernel-boot arguments from bool to int, and prints the extra console messages only when verbose=2. The default is still verbose=1. Signed-off-by:
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- Jun 21, 2018
-
-
Steven Rostedt (VMware) authored
While debugging where things were going wrong with mapping enabling/disabling interrupts with the lockdep state and actual real enabling and disabling interrupts, I had to silent the IRQ disabling/enabling in debug_check_no_locks_freed() because it was always showing up as it was called before the splat was. Use raw_local_irq_save/restore() for not only debug_check_no_locks_freed() but for all internal lockdep functions, as they hide useful information about where interrupts were used incorrectly last. Signed-off-by:
Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/lkml/20180404140630.3f4f4c7a@gandalf.local.home Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Jun 20, 2018
-
-
Waiman Long authored
It was found that the use of up_read_non_owner() in NFS was causing the following warning when DEBUG_RWSEMS was configured. DEBUG_LOCKS_WARN_ON(sem->owner != ((struct task_struct *)(1UL << 0))) Looking into the rwsem.c file, it was discovered that the corresponding down_read_non_owner() function was not setting the owner field properly. This is fixed now, and the warning should be gone. Fixes: 5149cbac ("locking/rwsem: Add DEBUG_RWSEMS to look for lock/unlock mismatches") Signed-off-by:
Waiman Long <longman@redhat.com> Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Acked-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by:
Gavin Schenk <g.schenk@eckelmann.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-nfs@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1527168398-4291-1-git-send-email-longman@redhat.com
-
- Jun 12, 2018
-
-
Kees Cook authored
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by:
Kees Cook <keescook@chromium.org>
-
Kees Cook authored
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by:
Kees Cook <keescook@chromium.org>
-
- May 25, 2018
-
-
Oleg Nesterov authored
Add the trivial owner_on_cpu() helper for rwsem_can_spin_on_owner() and rwsem_spin_on_owner(), it also allows to make rwsem_can_spin_on_owner() a bit more clear. Signed-off-by:
Oleg Nesterov <oleg@redhat.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by:
Waiman Long <longman@redhat.com> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180518165534.GA22348@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- May 16, 2018
-
-
Waiman Long authored
The filesystem freezing code needs to transfer ownership of a rwsem embedded in a percpu-rwsem from the task that does the freezing to another one that does the thawing by calling percpu_rwsem_release() after freezing and percpu_rwsem_acquire() before thawing. However, the new rwsem debug code runs afoul with this scheme by warning that the task that releases the rwsem isn't the one that acquires it, as reported by Amir Goldstein: DEBUG_LOCKS_WARN_ON(sem->owner != get_current()) WARNING: CPU: 1 PID: 1401 at /home/amir/build/src/linux/kernel/locking/rwsem.c:133 up_write+0x59/0x79 Call Trace: percpu_up_write+0x1f/0x28 thaw_super_locked+0xdf/0x120 do_vfs_ioctl+0x270/0x5f1 ksys_ioctl+0x52/0x71 __x64_sys_ioctl+0x16/0x19 do_syscall_64+0x5d/0x167 entry_SYSCALL_64_after_hwframe+0x49/0xbe To work properly with the rwsem debug code, we need to annotate that the rwsem ownership is unknown during the tranfer period until a brave soul comes forward to acquire the ownership. During that period, optimistic spinning will be disabled. Reported-by:
Amir Goldstein <amir73il@gmail.com> Tested-by:
Amir Goldstein <amir73il@gmail.com> Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-3-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Waiman Long authored
There are use cases where a rwsem can be acquired by one task, but released by another task. In thess cases, optimistic spinning may need to be disabled. One example will be the filesystem freeze/thaw code where the task that freezes the filesystem will acquire a write lock on a rwsem and then un-owns it before returning to userspace. Later on, another task will come along, acquire the ownership, thaw the filesystem and release the rwsem. Bit 0 of the owner field was used to designate that it is a reader owned rwsem. It is now repurposed to mean that the owner of the rwsem is not known. If only bit 0 is set, the rwsem is reader owned. If bit 0 and other bits are set, it is writer owned with an unknown owner. One such value for the latter case is (-1L). So we can set owner to 1 for reader-owned, -1 for writer-owned. The owner is unknown in both cases. To handle transfer of rwsem ownership, the higher level code should set the owner field to -1 to indicate a write-locked rwsem with unknown owner. Optimistic spinning will be disabled in this case. Once the higher level code figures who the new owner is, it can then set the owner field accordingly. Tested-by:
Amir Goldstein <amir73il@gmail.com> Signed-off-by:
Waiman Long <longman@redhat.com> Acked-by:
Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-2-git-send-email-longman@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Christoph Hellwig authored
Variants of proc_create{,_data} that directly take a seq_file show callback and drastically reduces the boilerplate code in the callers. All trivial callers converted over. Signed-off-by:
Christoph Hellwig <hch@lst.de>
-
Christoph Hellwig authored
Variants of proc_create{,_data} that directly take a struct seq_operations argument and drastically reduces the boilerplate code in the callers. All trivial callers converted over. Signed-off-by:
Christoph Hellwig <hch@lst.de>
-
- May 14, 2018
-
-
Tetsuo Handa authored
Calling lockdep_print_held_locks() on a running thread is considered unsafe. Since all callers should follow that rule and the sanity check is not heavy, this patch moves the sanity check to inside lockdep_print_held_locks(). As a side effect of this patch, the number of locks held by running threads will be printed as well. This change will be preferable when we want to know which threads might be relevant to a problem but are unable to print any clues because that thread is running. Signed-off-by:
Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1523011279-8206-2-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Tetsuo Handa authored
debug_show_all_locks() tries to grab the tasklist_lock for two seconds, but calling while_each_thread() without tasklist_lock held is not safe. See the following commit for more information: 4449a51a ("vm_is_stack: use for_each_thread() rather then buggy while_each_thread()") Change debug_show_all_locks() from "do_each_thread()/while_each_thread() with possibility of missing tasklist_lock" to "for_each_process_thread() with RCU", and add a call to touch_all_softlockup_watchdogs() like show_state_filter() does. Signed-off-by:
Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1523011279-8206-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- May 04, 2018
-
-
Peter Zijlstra authored
Use try_cmpxchg to avoid the pointless TEST instruction.. And add the (missing) atomic_long_try_cmpxchg*() wrappery. On x86_64 this gives: 0000000000000710 <mutex_lock>: 0000000000000710 <mutex_lock>: 710: 65 48 8b 14 25 00 00 mov %gs:0x0,%rdx 710: 65 48 8b 14 25 00 00 mov %gs:0x0,%rdx 717: 00 00 717: 00 00 715: R_X86_64_32S current_task 715: R_X86_64_32S current_task 719: 31 c0 xor %eax,%eax 719: 31 c0 xor %eax,%eax 71b: f0 48 0f b1 17 lock cmpxchg %rdx,(%rdi) 71b: f0 48 0f b1 17 lock cmpxchg %rdx,(%rdi) 720: 48 85 c0 test %rax,%rax 720: 75 02 jne 724 <mutex_lock+0x14> 723: 75 02 jne 727 <mutex_lock+0x17> 722: f3 c3 repz retq 725: f3 c3 repz retq 724: eb da jmp 700 <__mutex_lock_slowpath> 727: eb d7 jmp 700 <__mutex_lock_slowpath> 726: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1) 729: 0f 1f 80 00 00 00 00 nopl 0x0(%rax) 72d: 00 00 00 On ARM64 this gives: 000000000000638 <mutex_lock>: 0000000000000638 <mutex_lock>: 638: d5384101 mrs x1, sp_el0 638: d5384101 mrs x1, sp_el0 63c: d2800002 mov x2, #0x0 63c: d2800002 mov x2, #0x0 640: f9800011 prfm pstl1strm, [x0] 640: f9800011 prfm pstl1strm, [x0] 644: c85ffc03 ldaxr x3, [x0] 644: c85ffc03 ldaxr x3, [x0] 648: ca020064 eor x4, x3, x2 648: ca020064 eor x4, x3, x2 64c: b5000064 cbnz x4, 658 <mutex_lock+0x20> 64c: b5000064 cbnz x4, 658 <mutex_lock+0x20> 650: c8047c01 stxr w4, x1, [x0] 650: c8047c01 stxr w4, x1, [x0] 654: 35ffff84 cbnz w4, 644 <mutex_lock+0xc> 654: 35ffff84 cbnz w4, 644 <mutex_lock+0xc> 658: b40000c3 cbz x3, 670 <mutex_lock+0x38> 658: b5000043 cbnz x3, 660 <mutex_lock+0x28> 65c: a9bf7bfd stp x29, x30, [sp,#-16]! 65c: d65f03c0 ret 660: 910003fd mov x29, sp 660: a9bf7bfd stp x29, x30, [sp,#-16]! 664: 97ffffef bl 620 <__mutex_lock_slowpath> 664: 910003fd mov x29, sp 668: a8c17bfd ldp x29, x30, [sp],#16 668: 97ffffee bl 620 <__mutex_lock_slowpath> 66c: d65f03c0 ret 66c: a8c17bfd ldp x29, x30, [sp],#16 670: d65f03c0 ret 670: d65f03c0 ret Reported-by:
Matthew Wilcox <mawilcox@microsoft.com> Acked-by:
Will Deacon <will.deacon@arm.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Apr 27, 2018
-
-
Will Deacon authored
The native clear_pending() function is identical to the PV version, so the latter can simply be removed. This fixes the build for systems with >= 16K CPUs using the PV lock implementation. Reported-by:
Waiman Long <longman@redhat.com> Signed-off-by:
Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: boqun.feng@gmail.com Cc: linux-arm-kernel@lists.infradead.org Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/20180427101619.GB21705@arm.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-