- Apr 25, 2019
-
-
Ingo Molnar authored
Here's the objdump -D output of the PATCH_XXL data table: 0000000000000010 <patch_data_xxl>: 10: fa cli 11: fb sti 12: 57 push %rdi 13: 9d popfq 14: 9c pushfq 15: 58 pop %rax 16: 0f 20 d0 mov %cr2,%rax 19: 0f 20 d8 mov %cr3,%rax 1c: 0f 22 df mov %rdi,%cr3 1f: 0f 09 wbinvd 21: 0f 01 f8 swapgs 24: 48 0f 07 sysretq 27: 0f 01 f8 swapgs 2a: 48 89 f8 mov %rdi,%rax Note how this doesn't match up to the source code: static const struct patch_xxl patch_data_xxl = { .irq_irq_disable = { 0xfa }, // cli .irq_irq_enable = { 0xfb }, // sti .irq_save_fl = { 0x9c, 0x58 }, // pushf; pop %[re]ax .mmu_read_cr2 = { 0x0f, 0x20, 0xd0 }, // mov %cr2, %[re]ax .mmu_read_cr3 = { 0x0f, 0x20, 0xd8 }, // mov %cr3, %[re]ax .irq_restore_fl = { 0x57, 0x9d }, // push %rdi; popfq .mmu_write_cr3 = { 0x0f, 0x22, 0xdf }, // mov %rdi, %cr3 .cpu_wbinvd = { 0x0f, 0x09 }, // wbinvd .cpu_usergs_sysret64 = { 0x0f, 0x01, 0xf8, 0x48, 0x0f, 0x07 }, // swapgs; sysretq .cpu_swapgs = { 0x0f, 0x01, 0xf8 }, // swapgs .mov64 = { 0x48, 0x89, 0xf8 }, // mov %rdi, %rax .irq_restore_fl = { 0x50, 0x9d }, // push %eax; popf .mmu_write_cr3 = { 0x0f, 0x22, 0xd8 }, // mov %eax, %cr3 .cpu_iret = { 0xcf }, // iret }; Note how they are reordered: in the generated code .irq_restore_fl comes before .irq_save_fl, etc. This is because the field ordering in struct patch_xxl does not match the initialization ordering of patch_data_xxl. Match up the initialization order with the definition order - this makes the disassembly easily reviewable: 0000000000000010 <patch_data_xxl>: 10: fa cli 11: fb sti 12: 9c pushfq 13: 58 pop %rax 14: 0f 20 d0 mov %cr2,%rax 17: 0f 20 d8 mov %cr3,%rax 1a: 0f 22 df mov %rdi,%cr3 1d: 57 push %rdi 1e: 9d popfq 1f: 0f 09 wbinvd 21: 0f 01 f8 swapgs 24: 48 0f 07 sysretq 27: 0f 01 f8 swapgs 2a: 48 89 f8 mov %rdi,%rax Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190425081012.GA115378@gmail.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Thomas Gleixner authored
The magic macro DEF_NATIVE() in the paravirt patching code uses inline assembly to generate a data table for patching in the native instructions. While clever this is falling apart with LTO and even aside of LTO the construct is just working by chance according to GCC folks. Aside of that the tables are constant data and not some form of magic text. As these constructs are not subject to frequent changes it is not a maintenance issue to convert them to regular data tables which are initialized with hex bytes. Create a new set of macros and data structures to store the instruction sequences and convert the code over. Reported-by:
Andi Kleen <ak@linux.intel.com> Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20190424134223.690835713@linutronix.de Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Thomas Gleixner authored
Large parts of these two files are identical. Merge them together. Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20190424134223.603491680@linutronix.de Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Ingo Molnar authored
paravirt_patch_call() currently handles patching failures inconsistently: we generate a warning in the retpoline case, but don't in other cases where we might end up with a non-working kernel as well. So just convert it all to a BUG_ON(), these patching calls are *not* supposed to fail, and if they do we want to know it immediately. This also makes the kernel smaller and removes an #ifdef ugly. I tried it with a richly paravirt-enabled kernel and no patching bugs were detected. Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190425095039.GC115378@gmail.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Ingo Molnar authored
So paravirt_patch_insns() contains this gem of logic: unsigned paravirt_patch_insns(void *insnbuf, unsigned len, const char *start, const char *end) { unsigned insn_len = end - start; if (insn_len > len || start == NULL) insn_len = len; else memcpy(insnbuf, start, insn_len); return insn_len; } Note how 'len' (size of the original instruction) is checked against the new instruction, and silently discarded with no warning printed whatsoever. This crashes the kernel in funny ways if the patching template is buggy, and usually in much later places. Instead do a direct BUG_ON(), there's no way to continue successfully at that point. I've tested this patch, with the vanilla kernel check never triggers, and if I intentionally increase the size of one of the patch templates to a too high value the assert triggers: [ 0.164385] kernel BUG at arch/x86/kernel/paravirt.c:167! Without this patch a broken kernel randomly crashes in later places, after the silent patching failure. Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190425091717.GA72229@gmail.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Thomas Gleixner authored
These functions are already declared in asm/paravirt.h Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20190424134223.501598258@linutronix.de Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Apr 19, 2019
-
-
Hans de Goede authored
The "ENERGY_PERF_BIAS: Set to 'normal', was 'performance'" message triggers on pretty much every Intel machine. The purpose of log messages with a warning level is to notify the user of something which potentially is a problem, or at least somewhat unexpected. This message clearly does not match those criteria, so lower its log priority from warning to info. Signed-off-by:
Hans de Goede <hdegoede@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181230172715.17469-1-hdegoede@redhat.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Andi Kleen authored
Some of the recently added const tables use __initdata which causes section attribute conflicts. Use __initconst instead. Fixes: fa1202ef ("x86/speculation: Add command line control") Signed-off-by:
Andi Kleen <ak@linux.intel.com> Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190330004743.29541-9-andi@firstfloor.org
-
Masami Hiramatsu authored
Avoid kretprobe recursion loop bg by setting a dummy kprobes to current_kprobe per-CPU variable. This bug has been introduced with the asm-coded trampoline code, since previously it used another kprobe for hooking the function return placeholder (which only has a nop) and trampoline handler was called from that kprobe. This revives the old lost kprobe again. With this fix, we don't see deadlock anymore. And you can see that all inner-called kretprobe are skipped. event_1 235 0 event_2 19375 19612 The 1st column is recorded count and the 2nd is missed count. Above shows (event_1 rec) + (event_2 rec) ~= (event_2 missed) (some difference are here because the counter is racy) Reported-by:
Andrea Righi <righi.andrea@gmail.com> Tested-by:
Andrea Righi <righi.andrea@gmail.com> Signed-off-by:
Masami Hiramatsu <mhiramat@kernel.org> Acked-by:
Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: c9becf58 ("[PATCH] kretprobe: kretprobe-booster") Link: http://lkml.kernel.org/r/155094064889.6137.972160690963039.stgit@devbox Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Masami Hiramatsu authored
Verify the stack frame pointer on kretprobe trampoline handler, If the stack frame pointer does not match, it skips the wrong entry and tries to find correct one. This can happen if user puts the kretprobe on the function which can be used in the path of ftrace user-function call. Such functions should not be probed, so this adds a warning message that reports which function should be blacklisted. Tested-by:
Andrea Righi <righi.andrea@gmail.com> Signed-off-by:
Masami Hiramatsu <mhiramat@kernel.org> Acked-by:
Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/155094059185.6137.15527904013362842072.stgit@devbox Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Apr 18, 2019
-
-
Nathan Chancellor authored
Commit 045afc24 ("arm64: futex: Fix FUTEX_WAKE_OP atomic ops with non-zero result value") removed oldval's zero initialization in arch_futex_atomic_op_inuser because it is not necessary. Unfortunately, Android's arm64 GCC 4.9.4 [1] does not agree: ../kernel/futex.c: In function 'do_futex': ../kernel/futex.c:1658:17: warning: 'oldval' may be used uninitialized in this function [-Wmaybe-uninitialized] return oldval == cmparg; ^ In file included from ../kernel/futex.c:73:0: ../arch/arm64/include/asm/futex.h:53:6: note: 'oldval' was declared here int oldval, ret, tmp; ^ GCC fails to follow that when ret is non-zero, futex_atomic_op_inuser returns right away, avoiding the uninitialized use that it claims. Restoring the zero initialization works around this issue. [1]: https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-android-4.9/ Cc: stable@vger.kernel.org Fixes: 045afc24 ("arm64: futex: Fix FUTEX_WAKE_OP atomic ops with non-zero result value") Reviewed-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by:
Nathan Chancellor <natechancellor@gmail.com> Signed-off-by:
Catalin Marinas <catalin.marinas@arm.com>
-
Kim Phillips authored
Family 17h differs from prior families by: - Does not support an L2 cache miss event - It has re-enumerated PMC counters for: - L2 cache references - front & back end stalled cycles So we add a new amd_f17h_perfmon_event_map[] so that the generic perf event names will resolve to the correct h/w events on family 17h and above processors. Reference sections 2.1.13.3.3 (stalls) and 2.1.13.3.6 (L2): https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf Signed-off-by:
Kim Phillips <kim.phillips@amd.com> Cc: <stable@vger.kernel.org> # v4.9+ Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Liška <mliska@suse.cz> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: e40ed154 ("perf/x86: Add perf support for AMD family-17h processors") [ Improved the formatting a bit. ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Baoquan He authored
kernel_randomize_memory() uses __PHYSICAL_MASK_SHIFT to calculate the maximum amount of system RAM supported. The size of the direct mapping section is obtained from the smaller one of the below two values: (actual system RAM size + padding size) vs (max system RAM size supported) This calculation is wrong since commit b83ce5ee ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52"). In it, __PHYSICAL_MASK_SHIFT was changed to be 52, regardless of whether the kernel is using 4-level or 5-level page tables. Thus, it will always use 4 PB as the maximum amount of system RAM, even in 4-level paging mode where it should actually be 64 TB. Thus, the size of the direct mapping section will always be the sum of the actual system RAM size plus the padding size. Even when the amount of system RAM is 64 TB, the following layout will still be used. Obviously KALSR will be weakened significantly. |____|_______actual RAM_______|_padding_|______the rest_______| 0 64TB ~120TB Instead, it should be like this: |____|_______actual RAM_______|_________the rest______________| 0 64TB ~120TB The size of padding region is controlled by CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING, which is 10 TB by default. The above issue only exists when CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING is set to a non-zero value, which is the case when CONFIG_MEMORY_HOTPLUG is enabled. Otherwise, using __PHYSICAL_MASK_SHIFT doesn't affect KASLR. Fix it by replacing __PHYSICAL_MASK_SHIFT with MAX_PHYSMEM_BITS. [ bp: Massage commit message. ] Fixes: b83ce5ee ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52") Signed-off-by:
Baoquan He <bhe@redhat.com> Signed-off-by:
Borislav Petkov <bp@suse.de> Reviewed-by:
Thomas Garnier <thgarnie@google.com> Acked-by:
Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: frank.ramsay@hpe.com Cc: herbert@gondor.apana.org.au Cc: kirill@shutemov.name Cc: mike.travis@hpe.com Cc: thgarnie@google.com Cc: x86-ml <x86@kernel.org> Cc: yamada.masahiro@socionext.com Link: https://lkml.kernel.org/r/20190417083536.GE7065@MiWiFi-R3L-srv
-
- Apr 17, 2019
-
-
Vasily Gorbik authored
Inline assembly code changed in this patch should really use "Q" constraint "Memory reference without index register and with short displacement". The kernel build with kasan instrumentation enabled might occasionally break otherwise (due to stack instrumentation). Signed-off-by:
Vasily Gorbik <gor@linux.ibm.com> Signed-off-by:
Martin Schwidefsky <schwidefsky@de.ibm.com>
-
- Apr 16, 2019
-
-
Petr Štetiar authored
Currently it's not possible to use perf on ath79 due to genirq flags mismatch happening on static virtual IRQ 13 which is used for performance counters hardware IRQ 5. On TP-Link Archer C7v5: CPU0 2: 0 MIPS 2 ath9k 4: 318 MIPS 4 19000000.eth 7: 55034 MIPS 7 timer 8: 1236 MISC 3 ttyS0 12: 0 INTC 1 ehci_hcd:usb1 13: 0 gpio-ath79 2 keys 14: 0 gpio-ath79 5 keys 15: 31 AR724X PCI 1 ath10k_pci $ perf top genirq: Flags mismatch irq 13. 00014c83 (mips_perf_pmu) vs. 00002003 (keys) On TP-Link Archer C7v4: CPU0 4: 0 MIPS 4 19000000.eth 5: 7135 MIPS 5 1a000000.eth 7: 98379 MIPS 7 timer 8: 30 MISC 3 ttyS0 12: 90028 INTC 0 ath9k 13: 5520 INTC 1 ehci_hcd:usb1 14: 4623 INTC 2 ehci_hcd:usb2 15: 32844 AR724X PCI 1 ath10k_pci 16: 0 gpio-ath79 16 keys 23: 0 gpio-ath79 23 keys $ perf top genirq: Flags mismatch irq 13. 00014c80 (mips_perf_pmu) vs. 00000080 (ehci_hcd:usb1) This problem is happening, because currently statically assigned virtual IRQ 13 for performance counters is not claimed during the initialization of MIPS PMU during the bootup, so the IRQ subsystem doesn't know, that this interrupt isn't available for further use. So this patch fixes the issue by simply booking hardware IRQ 5 for MIPS PMU. Tested-by:
Kevin 'ldir' Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk> Signed-off-by:
Petr Štetiar <ynezz@true.cz> Acked-by:
John Crispin <john@phrozen.org> Acked-by:
Marc Zyngier <marc.zyngier@arm.com> Signed-off-by:
Paul Burton <paul.burton@mips.com> Cc: linux-mips@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Cooper <jason@lakedaemon.net>
-
Vitaly Kuznetsov authored
In __apic_accept_irq() interface trig_mode is int and actually on some code paths it is set above u8: kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to (1 << 15) & e->msi.data kvm_apic_local_deliver sets it to reg & (1 << 15). Fix the immediate issue by making 'tm' into u16. We may also want to adjust __apic_accept_irq() interface and use proper sizes for vector, level, trig_mode but this is not urgent. Signed-off-by:
Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
These were found with smatch, and then generalized when applicable. Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Hariprasad Kelam authored
Changed passing argument as "0 to NULL" which resolves below sparse warning arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer Signed-off-by:
Hariprasad Kelam <hariprasad.kelam@gmail.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest, trigger a WARN, and/or lead to a buffer overrun in the host, e.g. rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64. KVM allows userspace to report long mode support via CPUID, even though the guest is all but guaranteed to crash if it actually tries to enable long mode. But, a pure 32-bit guest that is ignorant of long mode will happily plod along. SMM complicates things as 64-bit CPUs use a different SMRAM save state area. KVM handles this correctly for 64-bit kernels, e.g. uses the legacy save state map if userspace has hid long mode from the guest, but doesn't fare well when userspace reports long mode support on a 32-bit host kernel (32-bit KVM doesn't support 64-bit guests). Since the alternative is to crash the guest, e.g. by not loading state or explicitly requesting shutdown, unconditionally use the legacy SMRAM save state map for 32-bit KVM. If a guest has managed to get far enough to handle SMIs when running under a weird/buggy userspace hypervisor, then don't deliberately crash the guest since there are no downsides (from KVM's perspective) to allow it to continue running. Fixes: 660a5d51 ("KVM: x86: save/load state on SMM switch") Cc: stable@vger.kernel.org Signed-off-by:
Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save state area, i.e. don't save/restore EFER across SMM transitions. KVM somewhat models this, e.g. doesn't clear EFER on entry to SMM if the guest doesn't support long mode. But during RSM, KVM unconditionally clears EFER so that it can get back to pure 32-bit mode in order to start loading CRs with their actual non-SMM values. Clear EFER only when it will be written when loading the non-SMM state so as to preserve bits that can theoretically be set on 32-bit vCPUs, e.g. KVM always emulates EFER_SCE. And because CR4.PAE is cleared only to play nice with EFER, wrap that code in the long mode check as well. Note, this may result in a compiler warning about cr4 being consumed uninitialized. Re-read CR4 even though it's technically unnecessary, as doing so allows for more readable code and RSM emulation is not a performance critical path. Fixes: 660a5d51 ("KVM: x86: save/load state on SMM switch") Cc: stable@vger.kernel.org Signed-off-by:
Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
RSM emulation is currently broken on VMX when the interrupted guest has CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when loading SMSTATE into architectural state, e.g. by toggling it for problematic flows, and simply clear HF_SMM_MASK prior to loading architectural state (from SMRAM save state area). Reported-by:
Jon Doron <arilou@gmail.com> Cc: Jim Mattson <jmattson@google.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Fixes: 5bea5123 ("KVM: VMX: check nested state and CR4.VMXE against SMM") Signed-off-by:
Sean Christopherson <sean.j.christopherson@intel.com> Tested-by:
Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM save state map, i.e. kvm_smm_changed() needs to be called after state has been loaded and so cannot be done automatically when setting hflags from RSM. Signed-off-by:
Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
RSM emulation is currently broken on VMX when the interrupted guest has CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set when loading SMSTATE into architectural state, ideally RSM emulation itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM architectural state. Ostensibly, the only motivation for having HF_SMM_MASK set throughout the loading of state from the SMRAM save state area is so that the memory accesses from GET_SMSTATE() are tagged with role.smm. Load all of the SMRAM save state area from guest memory at the beginning of RSM emulation, and load state from the buffer instead of reading guest memory one-by-one. This paves the way for clearing HF_SMM_MASK prior to loading state, and also aligns RSM with the enter_smm() behavior, which fills a buffer and writes SMRAM save state in a single go. Signed-off-by:
Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Liran Alon authored
Issue was discovered when running kvm-unit-tests on KVM running as L1 on top of Hyper-V. When vmx_instruction_intercept unit-test attempts to run RDPMC to test RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU. Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC. The reason vmx_instruction_intercept unit-test attempts to run RDPMC even though Hyper-V doesn't support PMU is because L1 expose to L2 support for RDPMC-exiting. Which is reasonable to assume that is supported only in case CPU supports PMU to being with. Above issue can easily be simulated by modifying vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with "-cpu host,+vmx,-pmu" and run unit-test. To handle issue, change KVM to expose RDPMC-exiting only when guest supports PMU. Reported-by:
Saar Amar <saaramar@microsoft.com> Reviewed-by:
Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by:
Jim Mattson <jmattson@google.com> Signed-off-by:
Liran Alon <liran.alon@oracle.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Liran Alon authored
Before this change, reading a VMware pseduo PMC will succeed even when PMU is not supported by guest. This can easily be seen by running kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option. Reviewed-by:
Mihai Carabas <mihai.carabas@oracle.com> Signed-off-by:
Liran Alon <liran.alon@oracle.com> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
WANG Chao authored
guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by:
WANG Chao <chao.wang@ucloud.cn> Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Vitaly Kuznetsov authored
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P, the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing shows that we're sometimes able to deliver a few but never all. When we're trying to inject an NMI we may fail to do so immediately for various reasons, however, we still need to inject it so enable_nmi_window() arms nmi_singlestep mode. #DB occurs as expected, but we're not checking for pending NMIs before entering the guest and unless there's a different event to process, the NMI will never get delivered. Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure pending NMIs are checked and possibly injected. Signed-off-by:
Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Suthikulpanit, Suravee authored
Only clear the valid bit when invalidate logical APIC id entry. The current logic clear the valid bit, but also set the rest of the bits (including reserved bits) to 1. Fixes: 98d90582 ('svm: Fix AVIC DFR and LDR handling') Signed-off-by:
Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: stable@vger.kernel.org Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Suthikulpanit, Suravee authored
This reverts commit bb218fbc. As Oren Twaig pointed out the old discussion: https://patchwork.kernel.org/patch/8292231/ that the change coud potentially cause an extra IPI to be sent to the destination vcpu because the AVIC hardware already set the IRR bit before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running). Since writting to ICR and ICR2 will also set the IRR. If something triggers the destination vcpu to get scheduled before the emulation finishes, then this could result in an additional IPI. Also, the issue mentioned in the commit bb218fbc was misdiagnosed. Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Reported-by:
Oren Twaig <oren@scalemp.com> Signed-off-by:
Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: stable@vger.kernel.org Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Ben Gardon authored
KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by:
Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
The remaining failures of vmx.flat when EPT is disabled are caused by incorrectly reflecting VMfails to the L1 hypervisor. What happens is that nested_vmx_restore_host_state corrupts the guest CR3, reloading it with the host's shadow CR3 instead, because it blindly loads GUEST_CR3 from the vmcs01. For simplicity let's just always use hardware VMCS checks when EPT is disabled. This way, nested_vmx_restore_host_state is not reached at all (or at least shouldn't be reached). Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Colin Ian King authored
The Kconfig text contains a spelling mistake, fix it. Signed-off-by:
Colin Ian King <colin.king@canonical.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kernel-janitors@vger.kernel.org Link: http://lkml.kernel.org/r/20190416105751.18899-1-colin.king@canonical.com Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Kan Liang authored
PEBS_REGS used as mask for the supported registers for large PEBS. However, the mask cannot filter the sample_regs_user/sample_regs_intr correctly. (1ULL << PERF_REG_X86_*) should be used to replace PERF_REG_X86_*, which is only the index. Rename PEBS_REGS to PEBS_GP_REGS, because the mask is only for general purpose registers. Signed-off-by:
Kan Liang <kan.liang@linux.intel.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Fixes: 2fe1bc1f ("perf/x86: Enable free running PEBS for REGS_USER/INTR") Link: https://lkml.kernel.org/r/20190402194509.2832-2-kan.liang@linux.intel.com [ Renamed it to PEBS_GP_REGS - as 'GPRS' is used elsewhere ;-) ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Paolo Bonzini authored
As mentioned in the comment, there are some special cases where we can simply clear the TPR shadow bit from the CPU-based execution controls in the vmcs02. Handle them so that we can remove some XFAILs from vmx.flat. Signed-off-by:
Paolo Bonzini <pbonzini@redhat.com>
-
Peter Zijlstra authored
Revert the following commit: 515ab7c4: ("x86/mm: Align TLB invalidation info") I found out (the hard way) that under some .config options (notably L1_CACHE_SHIFT=7) and compiler combinations this on-stack alignment leads to a 320 byte stack usage, which then triggers a KASAN stack warning elsewhere. Using 320 bytes of stack space for a 40 byte structure is ludicrous and clearly not right. Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by:
Linus Torvalds <torvalds@linux-foundation.org> Acked-by:
Nadav Amit <namit@vmware.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 515ab7c4 ("x86/mm: Align TLB invalidation info") Link: http://lkml.kernel.org/r/20190416080335.GM7905@worktop.programming.kicks-ass.net [ Minor changelog edits. ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Jian-Hong Pan authored
Upon reboot, the Acer TravelMate X514-51T laptop appears to complete the shutdown process, but then it hangs in BIOS POST with a black screen. The problem is intermittent - at some points it has appeared related to Secure Boot settings or different kernel builds, but ultimately we have not been able to identify the exact conditions that trigger the issue to come and go. Besides, the EFI mode cannot be disabled in the BIOS of this model. However, after extensive testing, we observe that using the EFI reboot method reliably avoids the issue in all cases. So add a boot time quirk to use EFI reboot on such systems. Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=203119 Signed-off-by:
Jian-Hong Pan <jian-hong@endlessm.com> Signed-off-by:
Daniel Drake <drake@endlessm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Cc: linux@endlessm.com Link: http://lkml.kernel.org/r/20190412080152.3718-1-jian-hong@endlessm.com [ Fix !CONFIG_EFI build failure, clarify the code and the changelog a bit. ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Thomas Gleixner authored
Xose Vazquez Perez reported boot warnings when NX is disabled on the kernel command line. __early_set_fixmap() triggers this warning: attempted to set unsupported pgprot: 8000000000000163 bits: 8000000000000000 supported: 7fffffffffffffff WARNING: CPU: 0 PID: 0 at arch/x86/include/asm/pgtable.h:537 __early_set_fixmap+0xa2/0xff because it uses __default_kernel_pte_mask to mask out unsupported bits. Use __supported_pte_mask instead. Disabling NX on the command line also triggers the NX warning in the page table mapping check: WARNING: CPU: 1 PID: 1 at arch/x86/mm/dump_pagetables.c:262 note_page+0x2ae/0x650 .... Make the warning depend on NX set in __supported_pte_mask. Reported-by:
Xose Vazquez Perez <xose.vazquez@gmail.com> Tested-by:
Xose Vazquez Perez <xose.vazquez@gmail.com> Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1904151037530.1729@nanos.tec.linutronix.de Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
Sami Tolvanen authored
With CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y, we compile the kernel with -fdata-sections, which also splits the .bss section. The new section, with a new .bss.* name, which pattern gets missed by the main x86 linker script which only expects the '.bss' name. This results in the discarding of the second part and a too small, truncated .bss section and an unhappy, non-working kernel. Use the common BSS_MAIN macro in the linker script to properly capture and merge all the generated BSS sections. Signed-off-by:
Sami Tolvanen <samitolvanen@google.com> Reviewed-by:
Nick Desaulniers <ndesaulniers@google.com> Reviewed-by:
Kees Cook <keescook@chromium.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190415164956.124067-1-samitolvanen@google.com [ Extended the changelog. ] Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Apr 15, 2019
-
-
Aurelien Jarno authored
Commit 4c21b8fd (MIPS: seccomp: Handle indirect system calls (o32)) added indirect syscall detection for O32 processes running on MIPS64, but it did not work correctly for big endian kernel/processes. The reason is that the syscall number is loaded from ARG1 using the lw instruction while this is a 64-bit value, so zero is loaded instead of the syscall number. Fix the code by using the ld instruction instead. When running a 32-bit processes on a 64 bit CPU, the values are properly sign-extended, so it ensures the value passed to syscall_trace_enter is correct. Recent systemd versions with seccomp enabled whitelist the getpid syscall for their internal processes (e.g. systemd-journald), but call it through syscall(SYS_getpid). This fix therefore allows O32 big endian systems with a 64-bit kernel to run recent systemd versions. Signed-off-by:
Aurelien Jarno <aurelien@aurel32.net> Cc: <stable@vger.kernel.org> # v3.15+ Reviewed-by:
Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by:
Paul Burton <paul.burton@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: linux-mips@vger.kernel.org Cc: linux-kernel@vger.kernel.org
-
Arnd Bergmann authored
Add the io_uring and pidfd_send_signal system calls to all architectures. These system calls are designed to handle both native and compat tasks, so all entries are the same across architectures, only arm-compat and the generic tale still use an old format. Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> (s390) Acked-by:
Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by:
Arnd Bergmann <arnd@arndb.de>
-