Newer
Older
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
* Copyright (C) 1995, 1996 Paul M. Antoine
* Copyright (C) 1998 Ulf Carlsson
* Copyright (C) 1999 Silicon Graphics, Inc.
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
* Copyright (C) 2014, Imagination Technologies Ltd.
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/cpu_pm.h>
#include <linux/module.h>
#include <linux/extable.h>
#include <linux/sched/mm.h>
Ingo Molnar
committed
#include <linux/sched/debug.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/kallsyms.h>
#include <linux/kgdb.h>
#include <linux/kdebug.h>
#include <linux/kdb.h>
#include <linux/perf_event.h>
#include <asm/bootinfo.h>
#include <asm/branch.h>
#include <asm/break.h>
#include <asm/cpu-type.h>
#include <asm/fpu_emulator.h>
#include <asm/idle.h>
#include <asm/mips-cps.h>
#include <asm/mips-r2-to-r6-emul.h>
#include <asm/mipsregs.h>
#include <asm/mipsmtregs.h>
#include <asm/pgtable.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
Maciej W. Rozycki
committed
#include <asm/siginfo.h>
#include <linux/uaccess.h>
#include <asm/watch.h>
#include <asm/stacktrace.h>
extern void check_wait(void);
extern asmlinkage void rollback_handle_int(void);
extern asmlinkage void handle_int(void);
extern asmlinkage void handle_adel(void);
extern asmlinkage void handle_ades(void);
extern asmlinkage void handle_ibe(void);
extern asmlinkage void handle_dbe(void);
extern asmlinkage void handle_sys(void);
extern asmlinkage void handle_bp(void);
extern asmlinkage void handle_ri(void);
extern asmlinkage void handle_ri_rdhwr_tlbp(void);
extern asmlinkage void handle_ri_rdhwr(void);
extern asmlinkage void handle_cpu(void);
extern asmlinkage void handle_ov(void);
extern asmlinkage void handle_tr(void);
extern asmlinkage void handle_msa_fpe(void);
extern asmlinkage void handle_msa(void);
extern asmlinkage void handle_mdmx(void);
extern asmlinkage void handle_watch(void);
extern asmlinkage void handle_dsp(void);
extern asmlinkage void handle_mcheck(void);
extern asmlinkage void handle_reserved(void);
extern void tlb_do_page_fault_0(void);
void (*board_be_init)(void);
int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
void (*board_nmi_handler_setup)(void);
void (*board_ejtag_handler_setup)(void);
void (*board_bind_eic_interrupt)(int irq, int regset);
void(*board_cache_error_setup)(void);
static void show_raw_backtrace(unsigned long reg29)
unsigned long *sp = (unsigned long *)(reg29 & ~3);
unsigned long addr;
printk("Call Trace:");
#ifdef CONFIG_KALLSYMS
printk("\n");
#endif
while (!kstack_end(sp)) {
unsigned long __user *p =
(unsigned long __user *)(unsigned long)sp++;
if (__get_user(addr, p)) {
printk(" (Bad stack address)");
break;
if (__kernel_text_address(addr))
print_ip_sym(addr);
printk("\n");
#ifdef CONFIG_KALLSYMS
int raw_show_trace;
static int __init set_raw_show_trace(char *str)
{
raw_show_trace = 1;
return 1;
}
__setup("raw_show_trace", set_raw_show_trace);
#endif
static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
unsigned long sp = regs->regs[29];
unsigned long ra = regs->regs[31];
unsigned long pc = regs->cp0_epc;
if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
show_raw_backtrace(sp);
return;
}
printk("Call Trace:\n");
print_ip_sym(pc);
pc = unwind_stack(task, &sp, pc, &ra);
/*
* This routine abuses get_user()/put_user() to reference pointers
* with at least a bit of error checking ...
*/
static void show_stacktrace(struct task_struct *task,
const struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
long stackdata;
int i;
unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
printk("Stack :");
i = 0;
while ((unsigned long) sp & (PAGE_SIZE - 1)) {
if (i && ((i % (64 / field)) == 0)) {
pr_cont("\n");
printk(" ");
}
break;
}
if (__get_user(stackdata, sp++)) {
pr_cont(" (Bad stack address)");
pr_cont(" %0*lx", field, stackdata);
show_backtrace(task, regs);
}
void show_stack(struct task_struct *task, unsigned long *sp)
{
struct pt_regs regs;
mm_segment_t old_fs = get_fs();
if (sp) {
regs.regs[29] = (unsigned long)sp;
regs.regs[31] = 0;
regs.cp0_epc = 0;
} else {
if (task && task != current) {
regs.regs[29] = task->thread.reg29;
regs.regs[31] = 0;
regs.cp0_epc = task->thread.reg31;
#ifdef CONFIG_KGDB_KDB
} else if (atomic_read(&kgdb_active) != -1 &&
kdb_current_regs) {
memcpy(®s, kdb_current_regs, sizeof(regs));
#endif /* CONFIG_KGDB_KDB */
} else {
prepare_frametrace(®s);
}
}
/*
* show_stack() deals exclusively with kernel mode, so be sure to access
* the stack in the kernel (not user) address space.
*/
set_fs(KERNEL_DS);
show_stacktrace(task, ®s);
static void show_code(unsigned int __user *pc)
unsigned short __user *pc16 = NULL;
if ((unsigned long)pc & 1)
pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
pr_cont(" (Bad address in epc)\n");
pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
static void __show_regs(const struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
unsigned int cause = regs->cp0_cause;
unsigned int exccode;
show_regs_print_info(KERN_DEFAULT);
/*
* Saved main processor registers
*/
for (i = 0; i < 32; ) {
if ((i % 4) == 0)
printk("$%2d :", i);
if (i == 0)
#ifdef CONFIG_CPU_HAS_SMARTMIPS
printk("Acx : %0*lx\n", field, regs->acx);
#endif
if (MIPS_ISA_REV < 6) {
printk("Hi : %0*lx\n", field, regs->hi);
printk("Lo : %0*lx\n", field, regs->lo);
}
printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
(void *) regs->cp0_epc);
printk("ra : %0*lx %pS\n", field, regs->regs[31],
(void *) regs->regs[31]);
printk("Status: %08x ", (uint32_t) regs->cp0_status);
if (regs->cp0_status & ST0_KUO)
if (regs->cp0_status & ST0_IEO)
if (regs->cp0_status & ST0_KUP)
if (regs->cp0_status & ST0_IEP)
if (regs->cp0_status & ST0_KUC)
if (regs->cp0_status & ST0_IEC)
if (regs->cp0_status & ST0_KX)
if (regs->cp0_status & ST0_SX)
if (regs->cp0_status & ST0_UX)
switch (regs->cp0_status & ST0_KSU) {
case KSU_USER:
break;
case KSU_SUPERVISOR:
break;
case KSU_KERNEL:
break;
default:
break;
}
if (regs->cp0_status & ST0_ERL)
if (regs->cp0_status & ST0_EXL)
if (regs->cp0_status & ST0_IE)
exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
if (1 <= exccode && exccode <= 5)
printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
printk("PrId : %08x (%s)\n", read_c0_prid(),
cpu_name_string());
/*
* FIXME: really the generic show_regs should take a const pointer argument.
*/
void show_regs(struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
mm_segment_t old_fs = get_fs();
printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
current->comm, current->pid, current_thread_info(), current,
field, current_thread_info()->tp_value);
if (cpu_has_userlocal) {
unsigned long tls;
tls = read_c0_userlocal();
if (tls != current_thread_info()->tp_value)
printk("*HwTLS: %0*lx\n", field, tls);
}
if (!user_mode(regs))
/* Necessary for getting the correct stack content */
set_fs(KERNEL_DS);
show_stacktrace(current, regs);
show_code((unsigned int __user *) regs->cp0_epc);
set_fs(old_fs);
void __noreturn die(const char *str, struct pt_regs *regs)
if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
SIGSEGV) == NOTIFY_STOP)
printk("%s[#%d]:\n", str, ++die_counter);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (regs && kexec_should_crash(current))
crash_kexec(regs);
extern struct exception_table_entry __start___dbe_table[];
extern struct exception_table_entry __stop___dbe_table[];
__asm__(
" .section __dbe_table, \"a\"\n"
" .previous \n");
/* Given an address, look for it in the exception tables. */
static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
{
const struct exception_table_entry *e;
e = search_extable(__start___dbe_table,
__stop___dbe_table - __start___dbe_table, addr);
if (!e)
e = search_module_dbetables(addr);
return e;
}
asmlinkage void do_be(struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
const struct exception_table_entry *fixup = NULL;
int data = regs->cp0_cause & 4;
int action = MIPS_BE_FATAL;
/* XXX For now. Fixme, this searches the wrong table ... */
if (data && !user_mode(regs))
fixup = search_dbe_tables(exception_epc(regs));
if (fixup)
action = MIPS_BE_FIXUP;
if (board_be_handler)
action = board_be_handler(regs, fixup != NULL);
else
mips_cm_error_report();
case MIPS_BE_FIXUP:
if (fixup) {
regs->cp0_epc = fixup->nextinsn;
}
break;
default:
break;
}
/*
* Assume it would be too dangerous to continue ...
*/
printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
data ? "Data" : "Instruction",
field, regs->cp0_epc, field, regs->regs[31]);
if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
SIGBUS) == NOTIFY_STOP)
die_if_kernel("Oops", regs);
force_sig(SIGBUS, current);
out:
exception_exit(prev_state);
* ll/sc, rdhwr, sync emulation
*/
#define OPCODE 0xfc000000
#define BASE 0x03e00000
#define RT 0x001f0000
#define OFFSET 0x0000ffff
#define LL 0xc0000000
#define SC 0xe0000000
#define SPEC0 0x00000000
#define SPEC3 0x7c000000
#define RD 0x0000f800
#define FUNC 0x0000003f
/* microMIPS definitions */
#define MM_POOL32A_FUNC 0xfc00ffff
#define MM_RDHWR 0x00006b3c
#define MM_RS 0x001f0000
#define MM_RT 0x03e00000
/*
* The ll_bit is cleared by r*_switch.S
*/
unsigned int ll_bit;
struct task_struct *ll_task;
static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
long offset;
/*
* analyse the ll instruction that just caused a ri exception
* and put the referenced address to addr.
*/
/* sign extend offset */
offset = opcode & OFFSET;
offset <<= 16;
offset >>= 16;
((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
if ((unsigned long)vaddr & 3)
return SIGBUS;
if (get_user(value, vaddr))
return SIGSEGV;
preempt_disable();
if (ll_task == NULL || ll_task == current) {
ll_bit = 1;
} else {
ll_bit = 0;
}
ll_task = current;
preempt_enable();
regs->regs[(opcode & RT) >> 16] = value;
static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
long offset;
/*
* analyse the sc instruction that just caused a ri exception
* and put the referenced address to addr.
*/
/* sign extend offset */
offset = opcode & OFFSET;
offset <<= 16;
offset >>= 16;
((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
if ((unsigned long)vaddr & 3)
return SIGBUS;
preempt_disable();
if (ll_bit == 0 || ll_task != current) {
regs->regs[reg] = 0;
preempt_enable();
if (put_user(regs->regs[reg], vaddr))
return SIGSEGV;
}
/*
* ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
* opcodes are supposed to result in coprocessor unusable exceptions if
* executed on ll/sc-less processors. That's the theory. In practice a
* few processors such as NEC's VR4100 throw reserved instruction exceptions
* instead, so we're doing the emulation thing in both exception handlers.
*/
static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
if ((opcode & OPCODE) == LL) {
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
1, regs, 0);
return simulate_ll(regs, opcode);
}
if ((opcode & OPCODE) == SC) {
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
1, regs, 0);
return simulate_sc(regs, opcode);
return -1; /* Must be something else ... */
/*
* Simulate trapping 'rdhwr' instructions to provide user accessible
* registers not implemented in hardware.
static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
struct thread_info *ti = task_thread_info(current);
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
1, regs, 0);
switch (rd) {
regs->regs[rt] = smp_processor_id();
return 0;
regs->regs[rt] = min(current_cpu_data.dcache.linesz,
current_cpu_data.icache.linesz);
return 0;
regs->regs[rt] = read_c0_count();
return 0;
case MIPS_HWR_CCRES: /* Count register resolution */
switch (current_cpu_type()) {
case CPU_20KC:
case CPU_25KF:
regs->regs[rt] = 1;
break;
default:
regs->regs[rt] = 2;
}
return 0;
case MIPS_HWR_ULR: /* Read UserLocal register */
regs->regs[rt] = ti->tp_value;
return 0;
default:
return -1;
}
}
static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
{
if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
int rd = (opcode & RD) >> 11;
int rt = (opcode & RT) >> 16;
simulate_rdhwr(regs, rd, rt);
return 0;
}
/* Not ours. */
return -1;
}
static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
{
if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
int rd = (opcode & MM_RS) >> 16;
int rt = (opcode & MM_RT) >> 21;
simulate_rdhwr(regs, rd, rt);
return 0;
static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
{
if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
1, regs, 0);
return -1; /* Must be something else ... */
die_if_kernel("Integer overflow", regs);
force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
#ifdef CONFIG_MIPS_FP_SUPPORT
/*
* Send SIGFPE according to FCSR Cause bits, which must have already
* been masked against Enable bits. This is impotant as Inexact can
* happen together with Overflow or Underflow, and `ptrace' can set
* any bits.
*/
void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
struct task_struct *tsk)
{
int si_code = FPE_FLTUNK;
if (fcr31 & FPU_CSR_INV_X)
si_code = FPE_FLTINV;
else if (fcr31 & FPU_CSR_DIV_X)
si_code = FPE_FLTDIV;
else if (fcr31 & FPU_CSR_OVF_X)
si_code = FPE_FLTOVF;
else if (fcr31 & FPU_CSR_UDF_X)
si_code = FPE_FLTUND;
else if (fcr31 & FPU_CSR_INE_X)
si_code = FPE_FLTRES;
force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
struct vm_area_struct *vma;
switch (sig) {
case 0:
return 0;
case SIGFPE:
force_fcr31_sig(fcr31, fault_addr, current);
case SIGBUS:
force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
return 1;
case SIGSEGV:
down_read(¤t->mm->mmap_sem);
vma = find_vma(current->mm, (unsigned long)fault_addr);
if (vma && (vma->vm_start <= (unsigned long)fault_addr))
si_code = SEGV_ACCERR;
si_code = SEGV_MAPERR;
up_read(¤t->mm->mmap_sem);
force_sig_fault(SIGSEGV, si_code, fault_addr, current);
return 1;
default:
force_sig(sig, current);
return 1;
}
}
static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
unsigned long old_epc, unsigned long old_ra)
{
union mips_instruction inst = { .word = opcode };
void __user *fault_addr;
unsigned long fcr31;
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
int sig;
/* If it's obviously not an FP instruction, skip it */
switch (inst.i_format.opcode) {
case cop1_op:
case cop1x_op:
case lwc1_op:
case ldc1_op:
case swc1_op:
case sdc1_op:
break;
default:
return -1;
}
/*
* do_ri skipped over the instruction via compute_return_epc, undo
* that for the FPU emulator.
*/
regs->cp0_epc = old_epc;
regs->regs[31] = old_ra;
/* Run the emulator */
sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
&fault_addr);
* We can't allow the emulated instruction to leave any
* enabled Cause bits set in $fcr31.
fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
current->thread.fpu.fcr31 &= ~fcr31;
/* Restore the hardware register state */
own_fpu(1);
/* Send a signal if required. */
process_fpemu_return(sig, fault_addr, fcr31);
/*
* XXX Delayed fp exceptions when doing a lazy ctx switch XXX
*/
asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
{
void __user *fault_addr;
int sig;
if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
SIGFPE) == NOTIFY_STOP)
/* Clear FCSR.Cause before enabling interrupts */
write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
die_if_kernel("FP exception in kernel code", regs);
* Unimplemented operation exception. If we've got the full
* software emulator on-board, let's use it...
*
* Force FPU to dump state into task/thread context. We're
* moving a lot of data here for what is probably a single
* instruction, but the alternative is to pre-decode the FP
* register operands before invoking the emulator, which seems
* a bit extreme for what should be an infrequent event.
*/
/* Run the emulator */
sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
&fault_addr);
* We can't allow the emulated instruction to leave any
* enabled Cause bits set in $fcr31.
fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
current->thread.fpu.fcr31 &= ~fcr31;
} else {
sig = SIGFPE;
fault_addr = (void __user *) regs->cp0_epc;
/* Send a signal if required. */
process_fpemu_return(sig, fault_addr, fcr31);
out:
exception_exit(prev_state);
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*
* MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
* emulated more than some threshold number of instructions, force migration to
* a "CPU" that has FP support.
*/
static void mt_ase_fp_affinity(void)
{
#ifdef CONFIG_MIPS_MT_FPAFF
if (mt_fpemul_threshold > 0 &&
((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
/*
* If there's no FPU present, or if the application has already
* restricted the allowed set to exclude any CPUs with FPUs,
* we'll skip the procedure.
*/
if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
cpumask_t tmask;
current->thread.user_cpus_allowed
= current->cpus_allowed;
cpumask_and(&tmask, ¤t->cpus_allowed,
&mt_fpu_cpumask);
set_cpus_allowed_ptr(current, &tmask);
set_thread_flag(TIF_FPUBOUND);
}
}
#endif /* CONFIG_MIPS_MT_FPAFF */
}
#else /* !CONFIG_MIPS_FP_SUPPORT */
static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
unsigned long old_epc, unsigned long old_ra)
{
return -1;
}
#endif /* !CONFIG_MIPS_FP_SUPPORT */
Maciej W. Rozycki
committed
void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
SIGTRAP) == NOTIFY_STOP)
return;
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
SIGTRAP) == NOTIFY_STOP)
* A short test says that IRIX 5.3 sends SIGTRAP for all trap
* insns, even for trap and break codes that indicate arithmetic
* failures. Weird ...
* But should we continue the brokenness??? --macro
*/
switch (code) {
case BRK_OVERFLOW:
case BRK_DIVZERO:
scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
die_if_kernel(b, regs);
force_sig_fault(SIGFPE,
code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
(void __user *) regs->cp0_epc, current);
case BRK_BUG:
die_if_kernel("Kernel bug detected", regs);
force_sig(SIGTRAP, current);
case BRK_MEMU:
/*
* This breakpoint code is used by the FPU emulator to retake
* control of the CPU after executing the instruction from the
* delay slot of an emulated branch.
*
* Terminate if exception was recognized as a delay slot return
* otherwise handle as normal.
*/
if (do_dsemulret(regs))
return;
die_if_kernel("Math emu break/trap", regs);
force_sig(SIGTRAP, current);
break;
scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
die_if_kernel(b, regs);
Maciej W. Rozycki
committed
if (si_code) {
force_sig_fault(SIGTRAP, si_code, NULL, current);
Maciej W. Rozycki
committed
} else {
force_sig(SIGTRAP, current);
}
}
asmlinkage void do_bp(struct pt_regs *regs)
{
unsigned long epc = msk_isa16_mode(exception_epc(regs));
unsigned int opcode, bcode;
mm_segment_t seg;
seg = get_fs();
if (!user_mode(regs))
set_fs(KERNEL_DS);
current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
if (get_isa16_mode(regs->cp0_epc)) {
u16 instr[2];
if (__get_user(instr[0], (u16 __user *)epc))
goto out_sigsegv;
if (!cpu_has_mmips) {
bcode = (instr[0] >> 5) & 0x3f;
} else if (mm_insn_16bit(instr[0])) {