Newer
Older
regs->cp0_epc = old_epc; /* Undo skip-over. */
regs->regs[31] = old31;
force_sig(status, current);
}
out:
exception_exit(prev_state);
/*
* MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
* emulated more than some threshold number of instructions, force migration to
* a "CPU" that has FP support.
*/
static void mt_ase_fp_affinity(void)
{
#ifdef CONFIG_MIPS_MT_FPAFF
if (mt_fpemul_threshold > 0 &&
((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
/*
* If there's no FPU present, or if the application has already
* restricted the allowed set to exclude any CPUs with FPUs,
* we'll skip the procedure.
*/
if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
cpumask_t tmask;
current->thread.user_cpus_allowed
= current->cpus_allowed;
cpus_and(tmask, current->cpus_allowed,
mt_fpu_cpumask);
}
}
#endif /* CONFIG_MIPS_MT_FPAFF */
}
/*
* No lock; only written during early bootup by CPU 0.
*/
static RAW_NOTIFIER_HEAD(cu2_chain);
int __ref register_cu2_notifier(struct notifier_block *nb)
{
return raw_notifier_chain_register(&cu2_chain, nb);
}
int cu2_notifier_call_chain(unsigned long val, void *v)
{
return raw_notifier_call_chain(&cu2_chain, val, v);
}
static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
{
struct pt_regs *regs = data;
switch (action) {
default:
die_if_kernel("Unhandled kernel unaligned access or invalid "
"instruction", regs);
case CU2_EXCEPTION:
force_sig(SIGILL, current);
}
return NOTIFY_OK;
}
unsigned int __user *epc;
unsigned long old_epc, old31;
unsigned long __maybe_unused flags;
die_if_kernel("do_cpu invoked from kernel context!", regs);
cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
switch (cpid) {
case 0:
epc = (unsigned int __user *)exception_epc(regs);
old_epc = regs->cp0_epc;
old31 = regs->regs[31];
opcode = 0;
status = -1;
if (unlikely(compute_return_epc(regs) < 0))
if (get_isa16_mode(regs->cp0_epc)) {
unsigned short mmop[2] = { 0 };
if (unlikely(get_user(mmop[0], epc) < 0))
status = SIGSEGV;
if (unlikely(get_user(mmop[1], epc) < 0))
status = SIGSEGV;
opcode = (mmop[0] << 16) | mmop[1];
if (status < 0)
status = simulate_rdhwr_mm(regs, opcode);
} else {
if (unlikely(get_user(opcode, epc) < 0))
status = SIGSEGV;
if (!cpu_has_llsc && status < 0)
status = simulate_llsc(regs, opcode);
if (status < 0)
status = simulate_rdhwr_normal(regs, opcode);
}
if (status < 0)
status = SIGILL;
if (unlikely(status > 0)) {
regs->cp0_epc = old_epc; /* Undo skip-over. */
regs->regs[31] = old31;
force_sig(status, current);
}
case 3:
/*
* Old (MIPS I and MIPS II) processors will set this code
* for COP1X opcode instructions that replaced the original
* COP3 space. We don't limit COP1 space instructions in
* the emulator according to the CPU ISA, so we want to
* treat COP1X instructions consistently regardless of which
* code the CPU chose. Therefore we redirect this trap to
* the FP emulator too.
*
* Then some newer FPU-less processors use this code
* erroneously too, so they are covered by this choice
* as well.
*/
if (raw_cpu_has_fpu)
break;
/* Fall through. */
if (!raw_cpu_has_fpu) {
void __user *fault_addr = NULL;
sig = fpu_emulator_cop1Handler(regs,
¤t->thread.fpu,
0, &fault_addr);
if (!process_fpemu_return(sig, fault_addr))
raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
out:
exception_exit(prev_state);
}
asmlinkage void do_mdmx(struct pt_regs *regs)
{
enum ctx_state prev_state;
prev_state = exception_enter();
/*
* Called with interrupts disabled.
*/
asmlinkage void do_watch(struct pt_regs *regs)
{
* Clear WP (bit 22) bit of cause register so we don't loop
* forever.
cause = read_c0_cause();
cause &= ~(1 << 22);
write_c0_cause(cause);
/*
* If the current thread has the watch registers loaded, save
* their values and send SIGTRAP. Otherwise another thread
* left the registers set, clear them and continue.
*/
if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
mips_read_watch_registers();
force_sig(SIGTRAP, current);
mips_clear_watch_registers();
local_irq_enable();
}
}
asmlinkage void do_mcheck(struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
int multi_match = regs->cp0_status & ST0_TS;
if (multi_match) {
printk("Pagemask: %0x\n", read_c0_pagemask());
printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
printk("\n");
dump_tlb_all();
}
show_code((unsigned int __user *) regs->cp0_epc);
/*
* Some chips may have other causes of machine check (e.g. SB1
* graduation timer)
*/
panic("Caught Machine Check exception - %scaused by multiple "
"matching entries in the TLB.",
(multi_match) ? "" : "not ");
asmlinkage void do_mt(struct pt_regs *regs)
{
int subcode;
subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
>> VPECONTROL_EXCPT_SHIFT;
switch (subcode) {
case 0:
printk(KERN_DEBUG "Thread Underflow\n");
printk(KERN_DEBUG "Thread Overflow\n");
printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
printk(KERN_DEBUG "Gating Storage Exception\n");
printk(KERN_DEBUG "YIELD Scheduler Exception\n");
printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
subcode);
break;
}
die_if_kernel("MIPS MT Thread exception in kernel", regs);
force_sig(SIGILL, current);
}
asmlinkage void do_dsp(struct pt_regs *regs)
{
if (cpu_has_dsp)
panic("Unexpected DSP exception");
force_sig(SIGILL, current);
}
asmlinkage void do_reserved(struct pt_regs *regs)
{
/*
* Game over - no way to handle this if it ever occurs. Most probably
* caused by a new unknown cpu type or after another deadly
* hard/software error.
*/
show_regs(regs);
panic("Caught reserved exception %ld - should not happen.",
(regs->cp0_cause & 0x7f) >> 2);
}
static int __initdata l1parity = 1;
static int __init nol1parity(char *s)
{
l1parity = 0;
return 1;
}
__setup("nol1par", nol1parity);
static int __initdata l2parity = 1;
static int __init nol2parity(char *s)
{
l2parity = 0;
return 1;
}
__setup("nol2par", nol2parity);
/*
* Some MIPS CPUs can enable/disable for cache parity detection, but do
* it different ways.
*/
static inline void parity_protection_init(void)
{
switch (current_cpu_type()) {
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
case CPU_74K:
case CPU_1004K:
{
#define ERRCTL_PE 0x80000000
#define ERRCTL_L2P 0x00800000
unsigned long errctl;
unsigned int l1parity_present, l2parity_present;
errctl = read_c0_ecc();
errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
/* probe L1 parity support */
write_c0_ecc(errctl | ERRCTL_PE);
back_to_back_c0_hazard();
l1parity_present = (read_c0_ecc() & ERRCTL_PE);
/* probe L2 parity support */
write_c0_ecc(errctl|ERRCTL_L2P);
back_to_back_c0_hazard();
l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
if (l1parity_present && l2parity_present) {
if (l1parity)
errctl |= ERRCTL_PE;
if (l1parity ^ l2parity)
errctl |= ERRCTL_L2P;
} else if (l1parity_present) {
if (l1parity)
errctl |= ERRCTL_PE;
} else if (l2parity_present) {
if (l2parity)
errctl |= ERRCTL_L2P;
} else {
/* No parity available */
}
printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
write_c0_ecc(errctl);
back_to_back_c0_hazard();
errctl = read_c0_ecc();
printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
if (l1parity_present)
printk(KERN_INFO "Cache parity protection %sabled\n",
(errctl & ERRCTL_PE) ? "en" : "dis");
if (l2parity_present) {
if (l1parity_present && l1parity)
errctl ^= ERRCTL_L2P;
printk(KERN_INFO "L2 cache parity protection %sabled\n",
(errctl & ERRCTL_L2P) ? "en" : "dis");
}
}
break;
write_c0_ecc(0x80000000);
back_to_back_c0_hazard();
/* Set the PE bit (bit 31) in the c0_errctl register. */
printk(KERN_INFO "Cache parity protection %sabled\n",
(read_c0_ecc() & 0x80000000) ? "en" : "dis");
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
break;
case CPU_20KC:
case CPU_25KF:
/* Clear the DE bit (bit 16) in the c0_status register. */
printk(KERN_INFO "Enable cache parity protection for "
"MIPS 20KC/25KF CPUs.\n");
clear_c0_status(ST0_DE);
break;
default:
break;
}
}
asmlinkage void cache_parity_error(void)
{
const int field = 2 * sizeof(unsigned long);
unsigned int reg_val;
/* For the moment, report the problem and hang. */
printk("Cache error exception:\n");
printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
reg_val = read_c0_cacheerr();
printk("c0_cacheerr == %08x\n", reg_val);
printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
reg_val & (1<<30) ? "secondary" : "primary",
reg_val & (1<<31) ? "data" : "insn");
printk("Error bits: %s%s%s%s%s%s%s\n",
reg_val & (1<<29) ? "ED " : "",
reg_val & (1<<28) ? "ET " : "",
reg_val & (1<<26) ? "EE " : "",
reg_val & (1<<25) ? "EB " : "",
reg_val & (1<<24) ? "EI " : "",
reg_val & (1<<23) ? "E1 " : "",
reg_val & (1<<22) ? "E0 " : "");
printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
if (reg_val & (1<<22))
printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
if (reg_val & (1<<23))
printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
#endif
panic("Can't handle the cache error!");
}
/*
* SDBBP EJTAG debug exception handler.
* We skip the instruction and return to the next instruction.
*/
void ejtag_exception_handler(struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
unsigned long depc, old_epc, old_ra;
printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
if (debug & 0x80000000) {
/*
* In branch delay slot.
* We cheat a little bit here and use EPC to calculate the
* debug return address (DEPC). EPC is restored after the
* calculation.
*/
old_epc = regs->cp0_epc;
old_ra = regs->regs[31];
compute_return_epc(regs);
regs->regs[31] = old_ra;
} else
depc += 4;
write_c0_depc(depc);
#if 0
printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
write_c0_debug(debug | 0x100);
#endif
}
/*
* NMI exception handler.
* No lock; only written during early bootup by CPU 0.
static RAW_NOTIFIER_HEAD(nmi_chain);
int register_nmi_notifier(struct notifier_block *nb)
{
return raw_notifier_chain_register(&nmi_chain, nb);
}
void __noreturn nmi_exception_handler(struct pt_regs *regs)
printk("NMI taken!!!!\n");
die("NMI", regs);
}
#define VECTORSPACING 0x100 /* for EI/VI mode */
unsigned long ebase;
unsigned long vi_handlers[64];
void __init *set_except_vector(int n, void *addr)
#ifdef CONFIG_CPU_MICROMIPS
/*
* Only the TLB handlers are cache aligned with an even
* address. All other handlers are on an odd address and
* require no modification. Otherwise, MIPS32 mode will
* be entered when handling any TLB exceptions. That
* would be bad...since we must stay in microMIPS mode.
*/
if (!(handler & 0x1))
handler |= 1;
#endif
old_handler = xchg(&exception_handlers[n], handler);
#ifdef CONFIG_CPU_MICROMIPS
unsigned long jump_mask = ~((1 << 27) - 1);
#else
unsigned long jump_mask = ~((1 << 28) - 1);
u32 *buf = (u32 *)(ebase + 0x200);
unsigned int k0 = 26;
if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
uasm_i_j(&buf, handler & ~jump_mask);
uasm_i_nop(&buf);
} else {
UASM_i_LA(&buf, k0, handler);
uasm_i_jr(&buf, k0);
uasm_i_nop(&buf);
}
local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
}
return (void *)old_handler;
}
static void do_default_vi(void)
{
show_regs(get_irq_regs());
panic("Caught unexpected vectored interrupt.");
}
static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
{
unsigned long handler;
unsigned long old_handler = vi_handlers[n];
int srssets = current_cpu_data.srsets;
unsigned char *b;
BUG_ON(!cpu_has_veic && !cpu_has_vint);
BUG_ON((n < 0) && (n > 9));
if (addr == NULL) {
handler = (unsigned long) do_default_vi;
srs = 0;
handler = (unsigned long) addr;
vi_handlers[n] = handler;
b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
panic("Shadow register set %d not supported", srs);
if (cpu_has_veic) {
if (board_bind_eic_interrupt)
board_bind_eic_interrupt(n, srs);
/* SRSMap is only defined if shadow sets are implemented */
change_c0_srsmap(0xf << n*4, srs << n*4);
}
if (srs == 0) {
/*
* If no shadow set is selected then use the default handler
* that does normal register saving and standard interrupt exit
*/
extern char except_vec_vi, except_vec_vi_lui;
extern char except_vec_vi_ori, except_vec_vi_end;
extern char rollback_except_vec_vi;
char *vec_start = using_rollback_handler() ?
&rollback_except_vec_vi : &except_vec_vi;
#ifdef CONFIG_MIPS_MT_SMTC
/*
* We need to provide the SMTC vectored interrupt handler
* not only with the address of the handler, but with the
* Status.IM bit to be masked before going there.
*/
extern char except_vec_vi_mori;
#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
const int mori_offset = &except_vec_vi_mori - vec_start + 2;
#else
const int mori_offset = &except_vec_vi_mori - vec_start;
#endif /* CONFIG_MIPS_MT_SMTC */
#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
const int lui_offset = &except_vec_vi_lui - vec_start + 2;
const int ori_offset = &except_vec_vi_ori - vec_start + 2;
#else
const int lui_offset = &except_vec_vi_lui - vec_start;
const int ori_offset = &except_vec_vi_ori - vec_start;
#endif
const int handler_len = &except_vec_vi_end - vec_start;
if (handler_len > VECTORSPACING) {
/*
* Sigh... panicing won't help as the console
* is probably not configured :(
*/
panic("VECTORSPACING too small");
}
set_handler(((unsigned long)b - ebase), vec_start,
#ifdef CONFIG_CPU_MICROMIPS
(handler_len - 1));
#else
handler_len);
#endif
BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
h = (u16 *)(b + mori_offset);
*h = (0x100 << n);
#endif /* CONFIG_MIPS_MT_SMTC */
h = (u16 *)(b + lui_offset);
*h = (handler >> 16) & 0xffff;
h = (u16 *)(b + ori_offset);
*h = (handler & 0xffff);
local_flush_icache_range((unsigned long)b,
(unsigned long)(b+handler_len));
}
else {
/*
* In other cases jump directly to the interrupt handler. It
* is the handler's responsibility to save registers if required
* (eg hi/lo) and return from the exception using "eret".
*/
u32 insn;
h = (u16 *)b;
/* j handler */
#ifdef CONFIG_CPU_MICROMIPS
insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
#else
insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
#endif
h[0] = (insn >> 16) & 0xffff;
h[1] = insn & 0xffff;
h[2] = 0;
h[3] = 0;
local_flush_icache_range((unsigned long)b,
(unsigned long)(b+8));
void *set_vi_handler(int n, vi_handler_t addr)
extern void flush_tlb_handlers(void);
/*
* Timer interrupt
*/
int cp0_compare_irq;
EXPORT_SYMBOL_GPL(cp0_compare_irq);
int cp0_compare_irq_shift;
/*
* Performance counter IRQ or -1 if shared with timer
*/
int cp0_perfcount_irq;
EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
static int __cpuinitdata noulri;
static int __init ulri_disable(char *s)
{
pr_info("Disabling ulri\n");
noulri = 1;
return 1;
}
__setup("noulri", ulri_disable);
void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
{
unsigned int cpu = smp_processor_id();
unsigned int status_set = ST0_CU0;
unsigned int hwrena = cpu_hwrena_impl_bits;
#ifdef CONFIG_MIPS_MT_SMTC
int secondaryTC = 0;
int bootTC = (cpu == 0);
/*
* Only do per_cpu_trap_init() for first TC of Each VPE.
* Note that this hack assumes that the SMTC init code
* assigns TCs consecutively and in ascending order.
*/
if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
secondaryTC = 1;
#endif /* CONFIG_MIPS_MT_SMTC */
/*
* Disable coprocessors and select 32-bit or 64-bit addressing
* and the 16/32 or 32/32 FPR register model. Reset the BEV
* flag that some firmware may have left set and the TS bit (for
* IP27). Set XX for ISA IV code to work.
*/
status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
#endif
if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
if (cpu_has_dsp)
status_set |= ST0_MX;
change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
if (cpu_has_mips_r2)
hwrena |= 0x0000000f;
if (!noulri && cpu_has_userlocal)
hwrena |= (1 << 29);
if (hwrena)
write_c0_hwrena(hwrena);
#ifdef CONFIG_MIPS_MT_SMTC
if (!secondaryTC) {
#endif /* CONFIG_MIPS_MT_SMTC */
if (cpu_has_veic || cpu_has_vint) {
unsigned long sr = set_c0_status(ST0_BEV);
write_c0_ebase(ebase);
write_c0_status(sr);
/* Setting vector spacing enables EI/VI mode */
change_c0_intctl(0x3e0, VECTORSPACING);
if (cpu_has_divec) {
if (cpu_has_mipsmt) {
unsigned int vpflags = dvpe();
set_c0_cause(CAUSEF_IV);
evpe(vpflags);
} else
set_c0_cause(CAUSEF_IV);
}
/*
* Before R2 both interrupt numbers were fixed to 7, so on R2 only:
*
* o read IntCtl.IPTI to determine the timer interrupt
* o read IntCtl.IPPCI to determine the performance counter interrupt
*/
if (cpu_has_mips_r2) {
cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
if (cp0_perfcount_irq == cp0_compare_irq)
cp0_perfcount_irq = -1;
} else {
cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
cp0_perfcount_irq = -1;
}
#ifdef CONFIG_MIPS_MT_SMTC
}
#endif /* CONFIG_MIPS_MT_SMTC */
if (!cpu_data[cpu].asid_cache)
cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
BUG_ON(current->mm);
enter_lazy_tlb(&init_mm, current);
#ifdef CONFIG_MIPS_MT_SMTC
if (bootTC) {
#endif /* CONFIG_MIPS_MT_SMTC */
/* Boot CPU's cache setup in setup_arch(). */
if (!is_boot_cpu)
cpu_cache_init();
tlb_init();
#ifdef CONFIG_MIPS_MT_SMTC
} else if (!secondaryTC) {
/*
* First TC in non-boot VPE must do subset of tlb_init()
* for MMU countrol registers.
*/
write_c0_pagemask(PM_DEFAULT_MASK);
write_c0_wired(0);
}
#endif /* CONFIG_MIPS_MT_SMTC */
TLBMISS_HANDLER_SETUP();
/* Install CPU exception handler */
void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
#ifdef CONFIG_CPU_MICROMIPS
memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
#else
memcpy((void *)(ebase + offset), addr, size);
local_flush_icache_range(ebase + offset, ebase + offset + size);
}
static char panic_null_cerr[] __cpuinitdata =
"Trying to set NULL cache error exception handler";
/*
* Install uncached CPU exception handler.
* This is suitable only for the cache error exception which is the only
* exception handler that is being run uncached.
*/
void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
unsigned long size)
unsigned long uncached_ebase = CKSEG1ADDR(ebase);
if (!addr)
panic(panic_null_cerr);
memcpy((void *)(uncached_ebase + offset), addr, size);
}
static int __initdata rdhwr_noopt;
static int __init set_rdhwr_noopt(char *str)
{
rdhwr_noopt = 1;
return 1;
}
__setup("rdhwr_noopt", set_rdhwr_noopt);
extern char except_vec3_generic;
extern char except_vec3_r4000;
check_wait();
#if defined(CONFIG_KGDB)
if (kgdb_early_setup)
if (cpu_has_veic || cpu_has_vint) {
unsigned long size = 0x200 + VECTORSPACING*64;
ebase = (unsigned long)
__alloc_bootmem(size, 1 << fls(size), 0);
} else {
#ifdef CONFIG_KVM_GUEST
#define KVM_GUEST_KSEG0 0x40000000
ebase = KVM_GUEST_KSEG0;
#else
ebase = CKSEG0;
#endif
if (cpu_has_mips_r2)
ebase += (read_c0_ebase() & 0x3ffff000);
}
if (board_ebase_setup)
board_ebase_setup();
/*
* Copy the generic exception handlers to their final destination.
* This will be overriden later as suitable for a particular
* configuration.
*/
set_handler(0x180, &except_vec3_generic, 0x80);
/*
* Setup default vectors
*/
for (i = 0; i <= 31; i++)
set_except_vector(i, handle_reserved);
/*
* Copy the EJTAG debug exception vector handler code to it's final
* destination.
*/
if (cpu_has_ejtag && board_ejtag_handler_setup)
board_ejtag_handler_setup();
/*
* Only some CPUs have the watch exceptions.
*/
if (cpu_has_watch)
set_except_vector(23, handle_watch);
/*
* Initialise interrupt handlers
if (cpu_has_veic || cpu_has_vint) {
int nvec = cpu_has_veic ? 64 : 8;
for (i = 0; i < nvec; i++)
}
else if (cpu_has_divec)
set_handler(0x200, &except_vec4, 0x8);
/*
* Some CPUs can enable/disable for cache parity detection, but does
* it different ways.
*/
parity_protection_init();
/*
* The Data Bus Errors / Instruction Bus Errors are signaled
* by external hardware. Therefore these two exceptions
* may have board specific handlers.
*/
if (board_be_init)
board_be_init();
set_except_vector(0, using_rollback_handler() ? rollback_handle_int
: handle_int);
set_except_vector(1, handle_tlbm);
set_except_vector(2, handle_tlbl);
set_except_vector(3, handle_tlbs);
set_except_vector(4, handle_adel);
set_except_vector(5, handle_ades);
set_except_vector(6, handle_ibe);
set_except_vector(7, handle_dbe);
set_except_vector(8, handle_sys);
set_except_vector(9, handle_bp);
set_except_vector(10, rdhwr_noopt ? handle_ri :
(cpu_has_vtag_icache ?
handle_ri_rdhwr_vivt : handle_ri_rdhwr));
set_except_vector(11, handle_cpu);
set_except_vector(12, handle_ov);
set_except_vector(13, handle_tr);
if (current_cpu_type() == CPU_R6000 ||
current_cpu_type() == CPU_R6000A) {
/*
* The R6000 is the only R-series CPU that features a machine
* check exception (similar to the R4000 cache error) and
* unaligned ldc1/sdc1 exception. The handlers have not been
* written yet. Well, anyway there is no R6000 machine on the
* current list of targets for Linux/MIPS.
* (Duh, crap, there is someone with a triple R6k machine)
*/
//set_except_vector(14, handle_mc);
//set_except_vector(15, handle_ndc);
}
if (board_nmi_handler_setup)
board_nmi_handler_setup();
if (cpu_has_fpu && !cpu_has_nofpuex)
set_except_vector(15, handle_fpe);
set_except_vector(22, handle_mdmx);
if (cpu_has_mcheck)
set_except_vector(24, handle_mcheck);
if (cpu_has_mipsmt)
set_except_vector(25, handle_mt);
set_except_vector(26, handle_dsp);
if (board_cache_error_setup)
board_cache_error_setup();
if (cpu_has_vce)
/* Special exception: R4[04]00 uses also the divec space. */
set_handler(0x180, &except_vec3_r4000, 0x100);
set_handler(0x180, &except_vec3_generic, 0x80);