Skip to content
api.rst 229 KiB
Newer Older
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT
  Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of
  the given vCPU from the .u.runstate.state member of the structure.
  KVM automatically accounts running and runnable time but blocked
  and offline states are only entered explicitly.

KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA
  Sets all fields of the vCPU runstate data from the .u.runstate member
  of the structure, including the current runstate. The state_entry_time
  must equal the sum of the other four times.

KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST
  This *adds* the contents of the .u.runstate members of the structure
  to the corresponding members of the given vCPU's runstate data, thus
  permitting atomic adjustments to the runstate times. The adjustment
  to the state_entry_time must equal the sum of the adjustments to the
  other four times. The state field must be set to -1, or to a valid
  runstate value (RUNSTATE_running, RUNSTATE_runnable, RUNSTATE_blocked
  or RUNSTATE_offline) to set the current accounted state as of the
  adjusted state_entry_time.

---------------------------

:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO
:Architectures: x86
:Type: vcpu ioctl
:Parameters: struct kvm_xen_vcpu_attr
:Returns: 0 on success, < 0 on error

Allows Xen vCPU attributes to be read. For the structure and types,
see KVM_XEN_VCPU_SET_ATTR above.
The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST type may not be used
with the KVM_XEN_VCPU_GET_ATTR ioctl.

Avi Kivity's avatar
Avi Kivity committed
5. The kvm_run structure
========================
Avi Kivity's avatar
Avi Kivity committed

Application code obtains a pointer to the kvm_run structure by
mmap()ing a vcpu fd.  From that point, application code can control
execution by changing fields in kvm_run prior to calling the KVM_RUN
ioctl, and obtain information about the reason KVM_RUN returned by
looking up structure members.

Avi Kivity's avatar
Avi Kivity committed
	/* in */
	__u8 request_interrupt_window;

Request that KVM_RUN return when it becomes possible to inject external
interrupts into the guest.  Useful in conjunction with KVM_INTERRUPT.

	__u8 immediate_exit;

This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
exits immediately, returning -EINTR.  In the common scenario where a
signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
Rather than blocking the signal outside KVM_RUN, userspace can set up
a signal handler that sets run->immediate_exit to a non-zero value.

This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.

Avi Kivity's avatar
Avi Kivity committed

	/* out */
	__u32 exit_reason;

When KVM_RUN has returned successfully (return value 0), this informs
application code why KVM_RUN has returned.  Allowable values for this
field are detailed below.

Avi Kivity's avatar
Avi Kivity committed
	__u8 ready_for_interrupt_injection;

If request_interrupt_window has been specified, this field indicates
an interrupt can be injected now with KVM_INTERRUPT.

Avi Kivity's avatar
Avi Kivity committed
	__u8 if_flag;

The value of the current interrupt flag.  Only valid if in-kernel
local APIC is not used.

	__u16 flags;

More architecture-specific flags detailing state of the VCPU that may
affect the device's behavior. Current defined flags::

  /* x86, set if the VCPU is in system management mode */
  #define KVM_RUN_X86_SMM     (1 << 0)
  /* x86, set if bus lock detected in VM */
  #define KVM_RUN_BUS_LOCK    (1 << 1)
Avi Kivity's avatar
Avi Kivity committed
	/* in (pre_kvm_run), out (post_kvm_run) */
	__u64 cr8;

The value of the cr8 register.  Only valid if in-kernel local APIC is
not used.  Both input and output.

Avi Kivity's avatar
Avi Kivity committed
	__u64 apic_base;

The value of the APIC BASE msr.  Only valid if in-kernel local
APIC is not used.  Both input and output.

Avi Kivity's avatar
Avi Kivity committed
	union {
		/* KVM_EXIT_UNKNOWN */
		struct {
			__u64 hardware_exit_reason;
		} hw;

If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
reasons.  Further architecture-specific information is available in
hardware_exit_reason.

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_FAIL_ENTRY */
		struct {
			__u64 hardware_entry_failure_reason;
			__u32 cpu; /* if KVM_LAST_CPU */
Avi Kivity's avatar
Avi Kivity committed
		} fail_entry;

If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
to unknown reasons.  Further architecture-specific information is
available in hardware_entry_failure_reason.

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_EXCEPTION */
		struct {
			__u32 exception;
			__u32 error_code;
		} ex;

Unused.

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_IO */
		struct {
  #define KVM_EXIT_IO_IN  0
  #define KVM_EXIT_IO_OUT 1
Avi Kivity's avatar
Avi Kivity committed
			__u8 direction;
			__u8 size; /* bytes */
			__u16 port;
			__u32 count;
			__u64 data_offset; /* relative to kvm_run start */
		} io;

If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity's avatar
Avi Kivity committed
executed a port I/O instruction which could not be satisfied by kvm.
data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
where kvm expects application code to place the data for the next
KVM_RUN invocation (KVM_EXIT_IO_IN).  Data format is a packed array.
		/* KVM_EXIT_DEBUG */
Avi Kivity's avatar
Avi Kivity committed
		struct {
			struct kvm_debug_exit_arch arch;
		} debug;

If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
for which architecture specific information is returned.
Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_MMIO */
		struct {
			__u64 phys_addr;
			__u8  data[8];
			__u32 len;
			__u8  is_write;
		} mmio;

If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity's avatar
Avi Kivity committed
executed a memory-mapped I/O instruction which could not be satisfied
by kvm.  The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.

The 'data' member contains, in its first 'len' bytes, the value as it would
appear if the VCPU performed a load or store of the appropriate width directly
to the byte array.

      For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN,
      KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding
      operations are complete (and guest state is consistent) only after userspace
      has re-entered the kernel with KVM_RUN.  The kernel side will first finish
      incomplete operations and then check for pending signals.

      The pending state of the operation is not preserved in state which is
      visible to userspace, thus userspace should ensure that the operation is
      completed before performing a live migration.  Userspace can re-enter the
      guest with an unmasked signal pending or with the immediate_exit field set
      to complete pending operations without allowing any further instructions
      to be executed.
Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_HYPERCALL */
		struct {
			__u64 nr;
			__u64 args[6];
			__u64 ret;
			__u32 longmode;
			__u32 pad;
		} hypercall;

Unused.  This was once used for 'hypercall to userspace'.  To implement
such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).

.. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.

::
Avi Kivity's avatar
Avi Kivity committed

		/* KVM_EXIT_TPR_ACCESS */
		struct {
			__u64 rip;
			__u32 is_write;
			__u32 pad;
		} tpr_access;

To be documented (KVM_TPR_ACCESS_REPORTING).

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_S390_SIEIC */
		struct {
			__u8 icptcode;
			__u64 mask; /* psw upper half */
			__u64 addr; /* psw lower half */
			__u16 ipa;
			__u32 ipb;
		} s390_sieic;

s390 specific.

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_S390_RESET */
  #define KVM_S390_RESET_POR       1
  #define KVM_S390_RESET_CLEAR     2
  #define KVM_S390_RESET_SUBSYSTEM 4
  #define KVM_S390_RESET_CPU_INIT  8
  #define KVM_S390_RESET_IPL       16
Avi Kivity's avatar
Avi Kivity committed
		__u64 s390_reset_flags;

s390 specific.

		/* KVM_EXIT_S390_UCONTROL */
		struct {
			__u64 trans_exc_code;
			__u32 pgm_code;
		} s390_ucontrol;

s390 specific. A page fault has occurred for a user controlled virtual
machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
resolved by the kernel.
The program code and the translation exception code that were placed
in the cpu's lowcore are presented here as defined by the z Architecture
Principles of Operation Book in the Chapter for Dynamic Address Translation
(DAT)

Avi Kivity's avatar
Avi Kivity committed
		/* KVM_EXIT_DCR */
		struct {
			__u32 dcrn;
			__u32 data;
			__u8  is_write;
		} dcr;

Deprecated - was used for 440 KVM.
		/* KVM_EXIT_OSI */
		struct {
			__u64 gprs[32];
		} osi;

MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
hypercalls and exit with this exit struct that contains all the guest gprs.

If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
Userspace can now handle the hypercall and when it's done modify the gprs as
necessary. Upon guest entry all guest GPRs will then be replaced by the values
in this struct.

		/* KVM_EXIT_PAPR_HCALL */
		struct {
			__u64 nr;
			__u64 ret;
			__u64 args[9];
		} papr_hcall;

This is used on 64-bit PowerPC when emulating a pSeries partition,
e.g. with the 'pseries' machine type in qemu.  It occurs when the
guest does a hypercall using the 'sc 1' instruction.  The 'nr' field
contains the hypercall number (from the guest R3), and 'args' contains
the arguments (from the guest R4 - R12).  Userspace should put the
return code in 'ret' and any extra returned values in args[].
The possible hypercalls are defined in the Power Architecture Platform
Requirements (PAPR) document available from www.power.org (free
developer registration required to access it).

		/* KVM_EXIT_S390_TSCH */
		struct {
			__u16 subchannel_id;
			__u16 subchannel_nr;
			__u32 io_int_parm;
			__u32 io_int_word;
			__u32 ipb;
			__u8 dequeued;
		} s390_tsch;

s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
interrupt for the target subchannel has been dequeued and subchannel_id,
subchannel_nr, io_int_parm and io_int_word contain the parameters for that
interrupt. ipb is needed for instruction parameter decoding.

		/* KVM_EXIT_EPR */
		struct {
			__u32 epr;
		} epr;

On FSL BookE PowerPC chips, the interrupt controller has a fast patch
interrupt acknowledge path to the core. When the core successfully
delivers an interrupt, it automatically populates the EPR register with
the interrupt vector number and acknowledges the interrupt inside
the interrupt controller.

In case the interrupt controller lives in user space, we need to do
the interrupt acknowledge cycle through it to fetch the next to be
delivered interrupt vector using this exit.

It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
external interrupt has just been delivered into the guest. User space
should put the acknowledged interrupt vector into the 'epr' field.

		/* KVM_EXIT_SYSTEM_EVENT */
		struct {
  #define KVM_SYSTEM_EVENT_SHUTDOWN       1
  #define KVM_SYSTEM_EVENT_RESET          2
  #define KVM_SYSTEM_EVENT_CRASH          3
			__u32 type;
			__u64 flags;
		} system_event;

If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
a system-level event using some architecture specific mechanism (hypercall
or some special instruction). In case of ARM/ARM64, this is triggered using
HVC instruction based PSCI call from the vcpu. The 'type' field describes
the system-level event type. The 'flags' field describes architecture
specific flags for the system-level event.

Valid values for 'type' are:

 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
   VM. Userspace is not obliged to honour this, and if it does honour
   this does not need to destroy the VM synchronously (ie it may call
   KVM_RUN again before shutdown finally occurs).
 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
   As with SHUTDOWN, userspace can choose to ignore the request, or
   to schedule the reset to occur in the future and may call KVM_RUN again.
 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
   has requested a crash condition maintenance. Userspace can choose
   to ignore the request, or to gather VM memory core dump and/or
   reset/shutdown of the VM.
		/* KVM_EXIT_IOAPIC_EOI */
		struct {
			__u8 vector;
		} eoi;

Indicates that the VCPU's in-kernel local APIC received an EOI for a
level-triggered IOAPIC interrupt.  This exit only triggers when the
IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
the userspace IOAPIC should process the EOI and retrigger the interrupt if
it is still asserted.  Vector is the LAPIC interrupt vector for which the
EOI was received.

		struct kvm_hyperv_exit {
  #define KVM_EXIT_HYPERV_SYNIC          1
  #define KVM_EXIT_HYPERV_HCALL          2
  #define KVM_EXIT_HYPERV_SYNDBG         3
			__u32 type;
			union {
				struct {
					__u32 msr;
					__u64 control;
					__u64 evt_page;
					__u64 msg_page;
				} synic;
				struct {
					__u64 input;
					__u64 result;
					__u64 params[2];
				} hcall;
				struct {
					__u32 msr;
					__u32 pad2;
					__u64 control;
					__u64 status;
					__u64 send_page;
					__u64 recv_page;
					__u64 pending_page;
				} syndbg;
			} u;
		};
		/* KVM_EXIT_HYPERV */
                struct kvm_hyperv_exit hyperv;
Indicates that the VCPU exits into userspace to process some tasks
related to Hyper-V emulation.
Valid values for 'type' are:

	- KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about

Hyper-V SynIC state change. Notification is used to remap SynIC
event/message pages and to enable/disable SynIC messages/events processing
in userspace.

	- KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about

Hyper-V Synthetic debugger state change. Notification is used to either update
the pending_page location or to send a control command (send the buffer located
in send_page or recv a buffer to recv_page).

		/* KVM_EXIT_ARM_NISV */
		struct {
			__u64 esr_iss;
			__u64 fault_ipa;
		} arm_nisv;

Used on arm and arm64 systems. If a guest accesses memory not in a memslot,
KVM will typically return to userspace and ask it to do MMIO emulation on its
behalf. However, for certain classes of instructions, no instruction decode
(direction, length of memory access) is provided, and fetching and decoding
the instruction from the VM is overly complicated to live in the kernel.

Historically, when this situation occurred, KVM would print a warning and kill
the VM. KVM assumed that if the guest accessed non-memslot memory, it was
trying to do I/O, which just couldn't be emulated, and the warning message was
phrased accordingly. However, what happened more often was that a guest bug
caused access outside the guest memory areas which should lead to a more
meaningful warning message and an external abort in the guest, if the access
did not fall within an I/O window.

Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable
this capability at VM creation. Once this is done, these types of errors will
instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from
the HSR (arm) and ESR_EL2 (arm64) in the esr_iss field, and the faulting IPA
in the fault_ipa field. Userspace can either fix up the access if it's
actually an I/O access by decoding the instruction from guest memory (if it's
very brave) and continue executing the guest, or it can decide to suspend,
dump, or restart the guest.

Note that KVM does not skip the faulting instruction as it does for
KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state
if it decides to decode and emulate the instruction.

::

		/* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */
		struct {
			__u8 error; /* user -> kernel */
			__u8 pad[7];
			__u32 reason; /* kernel -> user */
			__u32 index; /* kernel -> user */
			__u64 data; /* kernel <-> user */
		} msr;

Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is
enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code
will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR
exit for writes.

The "reason" field specifies why the MSR trap occurred. User space will only
receive MSR exit traps when a particular reason was requested during through
ENABLE_CAP. Currently valid exit reasons are:

	KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM
	KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits
	KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER

For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest
wants to read. To respond to this request with a successful read, user space
writes the respective data into the "data" field and must continue guest
execution to ensure the read data is transferred into guest register state.

If the RDMSR request was unsuccessful, user space indicates that with a "1" in
the "error" field. This will inject a #GP into the guest when the VCPU is
executed again.

For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest
wants to write. Once finished processing the event, user space must continue
vCPU execution. If the MSR write was unsuccessful, user space also sets the
"error" field to "1".

::


		struct kvm_xen_exit {
  #define KVM_EXIT_XEN_HCALL          1
			__u32 type;
			union {
				struct {
					__u32 longmode;
					__u32 cpl;
					__u64 input;
					__u64 result;
					__u64 params[6];
				} hcall;
			} u;
		};
		/* KVM_EXIT_XEN */
                struct kvm_hyperv_exit xen;

Indicates that the VCPU exits into userspace to process some tasks
related to Xen emulation.

Valid values for 'type' are:

  - KVM_EXIT_XEN_HCALL -- synchronously notify user-space about Xen hypercall.
    Userspace is expected to place the hypercall result into the appropriate
    field before invoking KVM_RUN again.

Avi Kivity's avatar
Avi Kivity committed
		/* Fix the size of the union. */
		char padding[256];
	};

	/*
	 * shared registers between kvm and userspace.
	 * kvm_valid_regs specifies the register classes set by the host
	 * kvm_dirty_regs specified the register classes dirtied by userspace
	 * struct kvm_sync_regs is architecture specific, as well as the
	 * bits for kvm_valid_regs and kvm_dirty_regs
	 */
	__u64 kvm_valid_regs;
	__u64 kvm_dirty_regs;
	union {
		struct kvm_sync_regs regs;
		char padding[SYNC_REGS_SIZE_BYTES];
	} s;

If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
certain guest registers without having to call SET/GET_*REGS. Thus we can
avoid some system call overhead if userspace has to handle the exit.
Userspace can query the validity of the structure by checking
kvm_valid_regs for specific bits. These bits are architecture specific
and usually define the validity of a groups of registers. (e.g. one bit
for general purpose registers)
Please note that the kernel is allowed to use the kvm_run structure as the
primary storage for certain register types. Therefore, the kernel may use the
values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.

6. Capabilities that can be enabled on vCPUs
============================================
There are certain capabilities that change the behavior of the virtual CPU or
the virtual machine when enabled. To enable them, please see section 4.37.
Below you can find a list of capabilities and what their effect on the vCPU or
the virtual machine is when enabling them.

The following information is provided along with the description:

  Architectures:
      which instruction set architectures provide this ioctl.
  Target:
      whether this is a per-vcpu or per-vm capability.
  Parameters:
      what parameters are accepted by the capability.
  Returns:
      the return value.  General error numbers (EBADF, ENOMEM, EINVAL)
      are not detailed, but errors with specific meanings are.

:Architectures: ppc
:Target: vcpu
:Parameters: none
:Returns: 0 on success; -1 on error

This capability enables interception of OSI hypercalls that otherwise would
be treated as normal system calls to be injected into the guest. OSI hypercalls
were invented by Mac-on-Linux to have a standardized communication mechanism
between the guest and the host.

When this capability is enabled, KVM_EXIT_OSI can occur.

--------------------
:Architectures: ppc
:Target: vcpu
:Parameters: none
:Returns: 0 on success; -1 on error

This capability enables interception of PAPR hypercalls. PAPR hypercalls are
done using the hypercall instruction "sc 1".

It also sets the guest privilege level to "supervisor" mode. Usually the guest
runs in "hypervisor" privilege mode with a few missing features.

In addition to the above, it changes the semantics of SDR1. In this mode, the
HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
HTAB invisible to the guest.

When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wood's avatar
Scott Wood committed
6.3 KVM_CAP_SW_TLB
------------------

:Architectures: ppc
:Target: vcpu
:Parameters: args[0] is the address of a struct kvm_config_tlb
:Returns: 0 on success; -1 on error
  struct kvm_config_tlb {
Scott Wood's avatar
Scott Wood committed
	__u64 params;
	__u64 array;
	__u32 mmu_type;
	__u32 array_len;
Scott Wood's avatar
Scott Wood committed

Configures the virtual CPU's TLB array, establishing a shared memory area
between userspace and KVM.  The "params" and "array" fields are userspace
addresses of mmu-type-specific data structures.  The "array_len" field is an
safety mechanism, and should be set to the size in bytes of the memory that
userspace has reserved for the array.  It must be at least the size dictated
by "mmu_type" and "params".

While KVM_RUN is active, the shared region is under control of KVM.  Its
contents are undefined, and any modification by userspace results in
boundedly undefined behavior.

On return from KVM_RUN, the shared region will reflect the current state of
the guest's TLB.  If userspace makes any changes, it must call KVM_DIRTY_TLB
to tell KVM which entries have been changed, prior to calling KVM_RUN again
on this vcpu.

For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
Scott Wood's avatar
Scott Wood committed
 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
 - The "array" field points to an array of type "struct
   kvm_book3e_206_tlb_entry".
 - The array consists of all entries in the first TLB, followed by all
   entries in the second TLB.
 - Within a TLB, entries are ordered first by increasing set number.  Within a
   set, entries are ordered by way (increasing ESEL).
 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
   where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
   hardware ignores this value for TLB0.

6.4 KVM_CAP_S390_CSS_SUPPORT
----------------------------
:Architectures: s390
:Target: vcpu
:Parameters: none
:Returns: 0 on success; -1 on error

This capability enables support for handling of channel I/O instructions.

TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
handled in-kernel, while the other I/O instructions are passed to userspace.

When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
SUBCHANNEL intercepts.
Note that even though this capability is enabled per-vcpu, the complete
virtual machine is affected.

6.5 KVM_CAP_PPC_EPR
:Architectures: ppc
:Target: vcpu
:Parameters: args[0] defines whether the proxy facility is active
:Returns: 0 on success; -1 on error

This capability enables or disables the delivery of interrupts through the
external proxy facility.

When enabled (args[0] != 0), every time the guest gets an external interrupt
delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
to receive the topmost interrupt vector.

When disabled (args[0] == 0), behavior is as if this facility is unsupported.

When this capability is enabled, KVM_EXIT_EPR can occur.

6.6 KVM_CAP_IRQ_MPIC
--------------------
:Architectures: ppc
:Parameters: args[0] is the MPIC device fd;
             args[1] is the MPIC CPU number for this vcpu

This capability connects the vcpu to an in-kernel MPIC device.
--------------------
:Architectures: ppc
:Target: vcpu
:Parameters: args[0] is the XICS device fd;
             args[1] is the XICS CPU number (server ID) for this vcpu

This capability connects the vcpu to an in-kernel XICS device.

6.8 KVM_CAP_S390_IRQCHIP
------------------------
:Architectures: s390
:Target: vm
:Parameters: none

This capability enables the in-kernel irqchip for s390. Please refer to
"4.24 KVM_CREATE_IRQCHIP" for details.
6.9 KVM_CAP_MIPS_FPU
--------------------
:Architectures: mips
:Target: vcpu
:Parameters: args[0] is reserved for future use (should be 0).

This capability allows the use of the host Floating Point Unit by the guest. It
allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be
accessed (depending on the current guest FPU register mode), and the Status.FR,
Config5.FRE bits are accessible via the KVM API and also from the guest,
depending on them being supported by the FPU.

6.10 KVM_CAP_MIPS_MSA
---------------------
:Architectures: mips
:Target: vcpu
:Parameters: args[0] is reserved for future use (should be 0).

This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*``
registers can be accessed, and the Config5.MSAEn bit is accessible via the
KVM API and also from the guest.
Ken Hofsass's avatar
Ken Hofsass committed
6.74 KVM_CAP_SYNC_REGS
----------------------

:Architectures: s390, x86
:Target: s390: always enabled, x86: vcpu
:Parameters: none
:Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register
          sets are supported
          (bitfields defined in arch/x86/include/uapi/asm/kvm.h).
Ken Hofsass's avatar
Ken Hofsass committed

As described above in the kvm_sync_regs struct info in section 5 (kvm_run):
KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers
without having to call SET/GET_*REGS". This reduces overhead by eliminating
repeated ioctl calls for setting and/or getting register values. This is
particularly important when userspace is making synchronous guest state
modifications, e.g. when emulating and/or intercepting instructions in
userspace.

For s390 specifics, please refer to the source code.

For x86:
Ken Hofsass's avatar
Ken Hofsass committed
- the register sets to be copied out to kvm_run are selectable
  by userspace (rather that all sets being copied out for every exit).
- vcpu_events are available in addition to regs and sregs.

For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to
function as an input bit-array field set by userspace to indicate the
specific register sets to be copied out on the next exit.

To indicate when userspace has modified values that should be copied into
the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set.
This is done using the same bitflags as for the 'kvm_valid_regs' field.
If the dirty bit is not set, then the register set values will not be copied
into the vCPU even if they've been modified.

Unused bitfields in the bitarrays must be set to zero.

Ken Hofsass's avatar
Ken Hofsass committed
        struct kvm_regs regs;
        struct kvm_sregs sregs;
        struct kvm_vcpu_events events;
-------------------------
:Architectures: ppc
:Target: vcpu
:Parameters: args[0] is the XIVE device fd;
             args[1] is the XIVE CPU number (server ID) for this vcpu

This capability connects the vcpu to an in-kernel XIVE device.

7. Capabilities that can be enabled on VMs
==========================================

There are certain capabilities that change the behavior of the virtual
machine when enabled. To enable them, please see section 4.37. Below
you can find a list of capabilities and what their effect on the VM
is when enabling them.

The following information is provided along with the description:

  Architectures:
      which instruction set architectures provide this ioctl.
  Parameters:
      what parameters are accepted by the capability.
  Returns:
      the return value.  General error numbers (EBADF, ENOMEM, EINVAL)
      are not detailed, but errors with specific meanings are.


7.1 KVM_CAP_PPC_ENABLE_HCALL
----------------------------
:Architectures: ppc
:Parameters: args[0] is the sPAPR hcall number;
	     args[1] is 0 to disable, 1 to enable in-kernel handling

This capability controls whether individual sPAPR hypercalls (hcalls)
get handled by the kernel or not.  Enabling or disabling in-kernel
handling of an hcall is effective across the VM.  On creation, an
initial set of hcalls are enabled for in-kernel handling, which
consists of those hcalls for which in-kernel handlers were implemented
before this capability was implemented.  If disabled, the kernel will
not to attempt to handle the hcall, but will always exit to userspace
to handle it.  Note that it may not make sense to enable some and
disable others of a group of related hcalls, but KVM does not prevent
userspace from doing that.

If the hcall number specified is not one that has an in-kernel
implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
error.
--------------------------
:Architectures: s390
:Parameters: none

This capability controls which SIGP orders will be handled completely in user
space. With this capability enabled, all fast orders will be handled completely
in the kernel:
- SENSE
- SENSE RUNNING
- EXTERNAL CALL
- EMERGENCY SIGNAL
- CONDITIONAL EMERGENCY SIGNAL

All other orders will be handled completely in user space.

Only privileged operation exceptions will be checked for in the kernel (or even
in the hardware prior to interception). If this capability is not enabled, the
old way of handling SIGP orders is used (partially in kernel and user space).

7.3 KVM_CAP_S390_VECTOR_REGISTERS
---------------------------------
:Architectures: s390
:Parameters: none
:Returns: 0 on success, negative value on error

Allows use of the vector registers introduced with z13 processor, and
provides for the synchronization between host and user space.  Will
return -EINVAL if the machine does not support vectors.

7.4 KVM_CAP_S390_USER_STSI
--------------------------
:Architectures: s390
:Parameters: none

This capability allows post-handlers for the STSI instruction. After
initial handling in the kernel, KVM exits to user space with
KVM_EXIT_S390_STSI to allow user space to insert further data.

Before exiting to userspace, kvm handlers should fill in s390_stsi field of
	__u64 addr;
	__u8 ar;
	__u8 reserved;
	__u8 fc;
	__u8 sel1;
	__u16 sel2;
  @addr - guest address of STSI SYSIB
  @fc   - function code
  @sel1 - selector 1
  @sel2 - selector 2
  @ar   - access register number

KVM handlers should exit to userspace with rc = -EREMOTE.
7.5 KVM_CAP_SPLIT_IRQCHIP
-------------------------
:Architectures: x86
:Parameters: args[0] - number of routes reserved for userspace IOAPICs
:Returns: 0 on success, -1 on error

Create a local apic for each processor in the kernel. This can be used
instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
IOAPIC and PIC (and also the PIT, even though this has to be enabled
separately).

This capability also enables in kernel routing of interrupt requests;
when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
used in the IRQ routing table.  The first args[0] MSI routes are reserved
for the IOAPIC pins.  Whenever the LAPIC receives an EOI for these routes,
a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.

Fails if VCPU has already been created, or if the irqchip is already in the
kernel (i.e. KVM_CREATE_IRQCHIP has already been called).

7.6 KVM_CAP_S390_RI
:Architectures: s390
:Parameters: none

Allows use of runtime-instrumentation introduced with zEC12 processor.
Will return -EINVAL if the machine does not support runtime-instrumentation.