Newer
Older
/*
* Copyright (C) 2003 Christophe Saout <christophe@saout.de>
* Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
* Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/crypto.h>
#include <linux/workqueue.h>
#include <linux/backing-dev.h>
#include <linux/scatterlist.h>
#include <asm/unaligned.h>
#define DM_MSG_PREFIX "crypt"
/*
* context holding the current state of a multi-part conversion
*/
struct convert_context {
struct bio *bio_in;
struct bio *bio_out;
unsigned int offset_in;
unsigned int offset_out;
unsigned int idx_in;
unsigned int idx_out;
sector_t sector;
/*
* per bio private data
*/
struct dm_crypt_io {
struct dm_target *target;
struct bio *base_bio;
struct work_struct work;
struct convert_context ctx;
atomic_t pending;
int error;
struct dm_crypt_request {
struct scatterlist sg_in;
struct scatterlist sg_out;
};
struct crypt_config;
struct crypt_iv_operations {
int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
void (*dtr)(struct crypt_config *cc);
const char *(*status)(struct crypt_config *cc);
int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
};
/*
* Crypt: maps a linear range of a block device
* and encrypts / decrypts at the same time.
*/
enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
struct crypt_config {
struct dm_dev *dev;
sector_t start;
/*
* pool for per bio private data, crypto requests and
* encryption requeusts/buffer pages
struct workqueue_struct *io_queue;
struct workqueue_struct *crypt_queue;
/*
* crypto related data
*/
struct crypt_iv_operations *iv_gen_ops;
char *iv_mode;
union {
struct crypto_cipher *essiv_tfm;
int benbi_shift;
} iv_gen_private;
/*
* Layout of each crypto request:
*
* struct ablkcipher_request
* context
* padding
* struct dm_crypt_request
* padding
* IV
*
* The padding is added so that dm_crypt_request and the IV are
* correctly aligned.
*/
unsigned int dmreq_start;
struct ablkcipher_request *req;
char cipher[CRYPTO_MAX_ALG_NAME];
char chainmode[CRYPTO_MAX_ALG_NAME];
struct crypto_blkcipher *tfm;
#define MIN_POOL_PAGES 32
#define MIN_BIO_PAGES 8
static struct kmem_cache *_crypt_io_pool;
static void clone_init(struct dm_crypt_io *, struct bio *);
static void kcryptd_queue_crypt(struct dm_crypt_io *io);
* plain: the initial vector is the 32-bit little-endian version of the sector
* number, padded with zeros if necessary.
* essiv: "encrypted sector|salt initial vector", the sector number is
* encrypted with the bulk cipher using a salt as key. The salt
* should be derived from the bulk cipher's key via hashing.
* benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
* (needed for LRW-32-AES and possible other narrow block modes)
*
* null: the initial vector is always zero. Provides compatibility with
* obsolete loop_fish2 devices. Do not use for new devices.
*
* plumb: unimplemented, see:
* http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
*/
static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
memset(iv, 0, cc->iv_size);
*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
return 0;
}
static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
struct crypto_cipher *essiv_tfm;
struct crypto_hash *hash_tfm;
struct hash_desc desc;
struct scatterlist sg;
unsigned int saltsize;
u8 *salt;
ti->error = "Digest algorithm missing for ESSIV mode";
return -EINVAL;
}
/* Hash the cipher key with the given hash algorithm */
hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(hash_tfm)) {
ti->error = "Error initializing ESSIV hash";
return PTR_ERR(hash_tfm);
saltsize = crypto_hash_digestsize(hash_tfm);
salt = kmalloc(saltsize, GFP_KERNEL);
if (salt == NULL) {
ti->error = "Error kmallocing salt storage in ESSIV";
crypto_free_hash(hash_tfm);
sg_init_one(&sg, cc->key, cc->key_size);
desc.tfm = hash_tfm;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
crypto_free_hash(hash_tfm);
if (err) {
ti->error = "Error calculating hash in ESSIV";
return err;
}
essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(essiv_tfm)) {
ti->error = "Error allocating crypto tfm for ESSIV";
return PTR_ERR(essiv_tfm);
if (crypto_cipher_blocksize(essiv_tfm) !=
crypto_blkcipher_ivsize(cc->tfm)) {
ti->error = "Block size of ESSIV cipher does "
crypto_free_cipher(essiv_tfm);
err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
if (err) {
ti->error = "Failed to set key for ESSIV cipher";
crypto_free_cipher(essiv_tfm);
cc->iv_gen_private.essiv_tfm = essiv_tfm;
return 0;
}
static void crypt_iv_essiv_dtr(struct crypt_config *cc)
{
crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
cc->iv_gen_private.essiv_tfm = NULL;
}
static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
memset(iv, 0, cc->iv_size);
*(u64 *)iv = cpu_to_le64(sector);
crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
const char *opts)
{
unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
int log = ilog2(bs);
/* we need to calculate how far we must shift the sector count
* to get the cipher block count, we use this shift in _gen */
if (1 << log != bs) {
ti->error = "cypher blocksize is not a power of 2";
return -EINVAL;
}
if (log > 9) {
ti->error = "cypher blocksize is > 512";
return -EINVAL;
}
cc->iv_gen_private.benbi_shift = 9 - log;
return 0;
}
static void crypt_iv_benbi_dtr(struct crypt_config *cc)
{
}
static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
{
memset(iv, 0, cc->iv_size);
return 0;
}
static struct crypt_iv_operations crypt_iv_plain_ops = {
.generator = crypt_iv_plain_gen
};
static struct crypt_iv_operations crypt_iv_essiv_ops = {
.ctr = crypt_iv_essiv_ctr,
.dtr = crypt_iv_essiv_dtr,
.generator = crypt_iv_essiv_gen
};
static struct crypt_iv_operations crypt_iv_benbi_ops = {
.ctr = crypt_iv_benbi_ctr,
.dtr = crypt_iv_benbi_dtr,
.generator = crypt_iv_benbi_gen
};
static struct crypt_iv_operations crypt_iv_null_ops = {
.generator = crypt_iv_null_gen
};
crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
struct scatterlist *in, unsigned int length,
int write, sector_t sector)
{
u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
struct blkcipher_desc desc = {
.tfm = cc->tfm,
.info = iv,
.flags = CRYPTO_TFM_REQ_MAY_SLEEP,
};
int r;
if (cc->iv_gen_ops) {
r = cc->iv_gen_ops->generator(cc, iv, sector);
if (r < 0)
return r;
if (write)
r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
r = crypto_blkcipher_encrypt(&desc, out, in, length);
r = crypto_blkcipher_decrypt(&desc, out, in, length);
static void crypt_convert_init(struct crypt_config *cc,
struct convert_context *ctx,
struct bio *bio_out, struct bio *bio_in,
{
ctx->bio_in = bio_in;
ctx->bio_out = bio_out;
ctx->offset_in = 0;
ctx->offset_out = 0;
ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
ctx->sector = sector + cc->iv_offset;
init_completion(&ctx->restart);
/*
* Crypto operation can be asynchronous,
* ctx->pending is increased after request submission.
* We need to ensure that we don't call the crypt finish
* operation before pending got incremented
* (dependent on crypt submission return code).
*/
atomic_set(&ctx->pending, 2);
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
static int crypt_convert_block(struct crypt_config *cc,
struct convert_context *ctx)
{
struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
struct dm_crypt_request dmreq;
sg_init_table(&dmreq.sg_in, 1);
sg_set_page(&dmreq.sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
bv_in->bv_offset + ctx->offset_in);
sg_init_table(&dmreq.sg_out, 1);
sg_set_page(&dmreq.sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
bv_out->bv_offset + ctx->offset_out);
ctx->offset_in += 1 << SECTOR_SHIFT;
if (ctx->offset_in >= bv_in->bv_len) {
ctx->offset_in = 0;
ctx->idx_in++;
}
ctx->offset_out += 1 << SECTOR_SHIFT;
if (ctx->offset_out >= bv_out->bv_len) {
ctx->offset_out = 0;
ctx->idx_out++;
}
return crypt_convert_scatterlist(cc, &dmreq.sg_out, &dmreq.sg_in,
dmreq.sg_in.length,
bio_data_dir(ctx->bio_in) == WRITE,
ctx->sector);
}
static void crypt_alloc_req(struct crypt_config *cc,
struct convert_context *ctx)
{
if (!cc->req)
cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
}
/*
* Encrypt / decrypt data from one bio to another one (can be the same one)
*/
static int crypt_convert(struct crypt_config *cc,
{
int r = 0;
while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
ctx->idx_out < ctx->bio_out->bi_vcnt) {
if (r < 0)
break;
ctx->sector++;
}
/*
* If there are pending crypto operation run async
* code. Otherwise process return code synchronously.
* The step of 2 ensures that async finish doesn't
* call crypto finish too early.
*/
if (atomic_sub_return(2, &ctx->pending))
return -EINPROGRESS;
static void dm_crypt_bio_destructor(struct bio *bio)
{
struct crypt_config *cc = io->target->private;
bio_free(bio, cc->bs);
/*
* Generate a new unfragmented bio with the given size
* This should never violate the device limitations
* May return a smaller bio when running out of pages
*/
static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
struct crypt_config *cc = io->target->private;
unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
page = mempool_alloc(cc->page_pool, gfp_mask);
if (!page)
break;
/*
* if additional pages cannot be allocated without waiting,
* return a partially allocated bio, the caller will then try
* to allocate additional bios while submitting this partial bio
*/
gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
if (!bio_add_page(clone, page, len, 0)) {
mempool_free(page, cc->page_pool);
break;
}
if (!clone->bi_size) {
bio_put(clone);
static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
bv = bio_iovec_idx(clone, i);
BUG_ON(!bv->bv_page);
mempool_free(bv->bv_page, cc->page_pool);
bv->bv_page = NULL;
}
}
/*
* One of the bios was finished. Check for completion of
* the whole request and correctly clean up the buffer.
*/
static void crypt_dec_pending(struct dm_crypt_io *io)
struct crypt_config *cc = io->target->private;
if (!atomic_dec_and_test(&io->pending))
return;
bio_endio(io->base_bio, io->error);
*
* Needed because it would be very unwise to do decryption in an
*
* kcryptd performs the actual encryption or decryption.
*
* kcryptd_io performs the IO submission.
*
* They must be separated as otherwise the final stages could be
* starved by new requests which can block in the first stages due
* to memory allocation.
static void crypt_endio(struct bio *clone, int error)
struct dm_crypt_io *io = clone->bi_private;
struct crypt_config *cc = io->target->private;
if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
error = -EIO;
* free the processed pages
if (rw == READ && !error) {
kcryptd_queue_crypt(io);
return;
}
if (unlikely(error))
io->error = error;
crypt_dec_pending(io);
static void clone_init(struct dm_crypt_io *io, struct bio *clone)
{
struct crypt_config *cc = io->target->private;
clone->bi_private = io;
clone->bi_end_io = crypt_endio;
clone->bi_bdev = cc->dev->bdev;
clone->bi_rw = io->base_bio->bi_rw;
clone->bi_destructor = dm_crypt_bio_destructor;
static void kcryptd_io_read(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->target->private;
struct bio *base_bio = io->base_bio;
struct bio *clone;
atomic_inc(&io->pending);
/*
* The block layer might modify the bvec array, so always
* copy the required bvecs because we need the original
* one in order to decrypt the whole bio data *afterwards*.
*/
clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
io->error = -ENOMEM;
crypt_dec_pending(io);
clone_init(io, clone);
clone->bi_idx = 0;
clone->bi_vcnt = bio_segments(base_bio);
clone->bi_size = base_bio->bi_size;
clone->bi_sector = cc->start + io->sector;
memcpy(clone->bi_io_vec, bio_iovec(base_bio),
sizeof(struct bio_vec) * clone->bi_vcnt);
generic_make_request(clone);
static void kcryptd_io_write(struct dm_crypt_io *io)
{
}
static void kcryptd_io(struct work_struct *work)
{
struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
if (bio_data_dir(io->base_bio) == READ)
kcryptd_io_read(io);
else
kcryptd_io_write(io);
}
static void kcryptd_queue_io(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->target->private;
INIT_WORK(&io->work, kcryptd_io);
queue_work(cc->io_queue, &io->work);
}
static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int error)
{
struct bio *clone = io->ctx.bio_out;
struct crypt_config *cc = io->target->private;
if (unlikely(error < 0)) {
crypt_free_buffer_pages(cc, clone);
bio_put(clone);
io->error = -EIO;
return;
}
/* crypt_convert should have filled the clone bio */
BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
clone->bi_sector = cc->start + io->sector;
io->sector += bio_sectors(clone);
atomic_inc(&io->pending);
generic_make_request(clone);
static void kcryptd_crypt_write_convert_loop(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->target->private;
struct bio *clone;
unsigned remaining = io->base_bio->bi_size;
int r;
/*
* The allocated buffers can be smaller than the whole bio,
* so repeat the whole process until all the data can be handled.
*/
while (remaining) {
clone = crypt_alloc_buffer(io, remaining);
io->error = -ENOMEM;
io->ctx.bio_out = clone;
io->ctx.idx_out = 0;
kcryptd_crypt_write_io_submit(io, r);
if (unlikely(r < 0))
return;
/* out of memory -> run queues */
congestion_wait(WRITE, HZ/100);
static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->target->private;
/*
* Prevent io from disappearing until this function completes.
*/
atomic_inc(&io->pending);
crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
kcryptd_crypt_write_convert_loop(io);
static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
{
if (unlikely(error < 0))
io->error = -EIO;
crypt_dec_pending(io);
}
static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
{
struct crypt_config *cc = io->target->private;
crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
r = crypt_convert(cc, &io->ctx);
static void kcryptd_crypt(struct work_struct *work)
struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
if (bio_data_dir(io->base_bio) == READ)
static void kcryptd_queue_crypt(struct dm_crypt_io *io)
struct crypt_config *cc = io->target->private;
INIT_WORK(&io->work, kcryptd_crypt);
queue_work(cc->crypt_queue, &io->work);
}
/*
* Decode key from its hex representation
*/
static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
{
char buffer[3];
char *endp;
unsigned int i;
buffer[2] = '\0';
for (i = 0; i < size; i++) {
buffer[0] = *hex++;
buffer[1] = *hex++;
key[i] = (u8)simple_strtoul(buffer, &endp, 16);
if (endp != &buffer[2])
return -EINVAL;
}
if (*hex != '\0')
return -EINVAL;
return 0;
}
/*
* Encode key into its hex representation
*/
static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++) {
sprintf(hex, "%02x", *key);
hex += 2;
key++;
}
}
static int crypt_set_key(struct crypt_config *cc, char *key)
{
unsigned key_size = strlen(key) >> 1;
if (cc->key_size && cc->key_size != key_size)
return -EINVAL;
cc->key_size = key_size; /* initial settings */
if ((!key_size && strcmp(key, "-")) ||
(key_size && crypt_decode_key(cc->key, key, key_size) < 0))
return -EINVAL;
set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
return 0;
}
static int crypt_wipe_key(struct crypt_config *cc)
{
clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
memset(&cc->key, 0, cc->key_size * sizeof(u8));
return 0;
}
/*
* Construct an encryption mapping:
* <cipher> <key> <iv_offset> <dev_path> <start>
*/
static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
struct crypt_config *cc;
struct crypto_blkcipher *tfm;
char *tmp;
char *cipher;
char *chainmode;
char *ivmode;
char *ivopts;
unsigned int key_size;
ti->error = "Not enough arguments";
return -EINVAL;
}
tmp = argv[0];
cipher = strsep(&tmp, "-");
chainmode = strsep(&tmp, "-");
ivopts = strsep(&tmp, "-");
ivmode = strsep(&ivopts, ":");
if (tmp)
DMWARN("Unexpected additional cipher options");
cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
"Cannot allocate transparent encryption context";
ti->error = "Error decoding key";
}
/* Compatiblity mode for old dm-crypt cipher strings */
if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
chainmode = "cbc";
ivmode = "plain";
}
if (strcmp(chainmode, "ecb") && !ivmode) {
ti->error = "This chaining mode requires an IV mechanism";
if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
ti->error = "Chain mode + cipher name is too long";
tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
ti->error = "Error allocating crypto tfm";
strcpy(cc->cipher, cipher);
strcpy(cc->chainmode, chainmode);
* Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
* See comments at iv code
*/
if (ivmode == NULL)
cc->iv_gen_ops = NULL;
else if (strcmp(ivmode, "plain") == 0)
cc->iv_gen_ops = &crypt_iv_plain_ops;
else if (strcmp(ivmode, "essiv") == 0)
cc->iv_gen_ops = &crypt_iv_essiv_ops;
else if (strcmp(ivmode, "benbi") == 0)
cc->iv_gen_ops = &crypt_iv_benbi_ops;
else if (strcmp(ivmode, "null") == 0)
cc->iv_gen_ops = &crypt_iv_null_ops;
ti->error = "Invalid IV mode";
}
if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
cc->iv_size = crypto_blkcipher_ivsize(tfm);
if (cc->iv_size)
/* at least a 64 bit sector number should fit in our buffer */
cc->iv_size = max(cc->iv_size,
DMWARN("Selected cipher does not support IVs");
if (cc->iv_gen_ops->dtr)
cc->iv_gen_ops->dtr(cc);
cc->iv_gen_ops = NULL;
}
}
cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
ti->error = "Cannot allocate crypt io mempool";
cc->dmreq_start = sizeof(struct ablkcipher_request);
cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
sizeof(struct dm_crypt_request) + cc->iv_size);
if (!cc->req_pool) {
ti->error = "Cannot allocate crypt request mempool";
goto bad_req_pool;
}
cc->req = NULL;
cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
ti->error = "Cannot allocate page mempool";
cc->bs = bioset_create(MIN_IOS, MIN_IOS);
if (!cc->bs) {
ti->error = "Cannot allocate crypt bioset";
goto bad_bs;
}
if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
ti->error = "Error setting key";
if (sscanf(argv[2], "%llu", &tmpll) != 1) {
ti->error = "Invalid iv_offset sector";
if (sscanf(argv[4], "%llu", &tmpll) != 1) {
ti->error = "Invalid device sector";
if (dm_get_device(ti, argv[3], cc->start, ti->len,
ti->error = "Device lookup failed";
}
if (ivmode && cc->iv_gen_ops) {
if (ivopts)
*(ivopts - 1) = ':';
cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
if (!cc->iv_mode) {
ti->error = "Error kmallocing iv_mode string";
}
strcpy(cc->iv_mode, ivmode);
} else
cc->iv_mode = NULL;
cc->io_queue = create_singlethread_workqueue("kcryptd_io");
if (!cc->io_queue) {
ti->error = "Couldn't create kcryptd io queue";
goto bad_io_queue;
}
cc->crypt_queue = create_singlethread_workqueue("kcryptd");
if (!cc->crypt_queue) {
ti->error = "Couldn't create kcryptd queue";