Newer
Older
select ACPI_CCA_REQUIRED if ACPI
select ACPI_GENERIC_GSI if ACPI
select ACPI_IORT if ACPI
select ACPI_REDUCED_HARDWARE_ONLY if ACPI
select ACPI_MCFG if ACPI
select ARCH_CLOCKSOURCE_DATA
select ARCH_HAS_DEVMEM_IS_ALLOWED
select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
select ARCH_HAS_FORTIFY_SOURCE
select ARCH_HAS_GCOV_PROFILE_ALL
select ARCH_HAS_GIGANTIC_PAGE if (MEMORY_ISOLATION && COMPACTION) || CMA
select ARCH_HAS_KCOV
select ARCH_HAS_MEMBARRIER_SYNC_CORE
select ARCH_HAS_PHYS_TO_DMA
select ARCH_HAS_SG_CHAIN
select ARCH_HAS_STRICT_KERNEL_RWX
select ARCH_HAS_STRICT_MODULE_RWX
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select ARCH_INLINE_READ_LOCK if !PREEMPT
select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
select ARCH_INLINE_READ_UNLOCK if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
select ARCH_INLINE_WRITE_LOCK if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
select ARCH_USE_CMPXCHG_LOCKREF
select ARCH_USE_QUEUED_RWLOCKS
select ARCH_SUPPORTS_MEMORY_FAILURE
select ARCH_SUPPORTS_ATOMIC_RMW
select ARCH_SUPPORTS_NUMA_BALANCING
select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
select ARCH_HAS_UBSAN_SANITIZE_ALL
select ARM_GIC
select BUILDTIME_EXTABLE_SORT
select CPU_PM if (SUSPEND || CPU_IDLE)
select DCACHE_WORD_ACCESS
select FRAME_POINTER
select GENERIC_ALLOCATOR
select GENERIC_ARCH_TOPOLOGY
select GENERIC_CLOCKEVENTS_BROADCAST
select GENERIC_CPU_AUTOPROBE
select GENERIC_IRQ_PROBE
select GENERIC_IRQ_SHOW
select GENERIC_SCHED_CLOCK
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
select HANDLE_DOMAIN_IRQ
select HAVE_ACPI_APEI if (ACPI && EFI)
select HAVE_ALIGNED_STRUCT_PAGE if SLUB
select HAVE_ARCH_BITREVERSE
select HAVE_ARCH_HUGE_VMAP
select HAVE_ARCH_JUMP_LABEL
select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
select HAVE_ARCH_MMAP_RND_BITS
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
select HAVE_ARCH_THREAD_STRUCT_WHITELIST
select HAVE_ARCH_TRANSPARENT_HUGEPAGE
select HAVE_ARM_SMCCC
select HAVE_EBPF_JIT
select HAVE_CONTEXT_TRACKING
Catalin Marinas
committed
select HAVE_DEBUG_BUGVERBOSE
select HAVE_DEBUG_KMEMLEAK
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_GENERIC_DMA_COHERENT
select HAVE_HW_BREAKPOINT if PERF_EVENTS
select HAVE_MEMBLOCK_NODE_MAP if NUMA
select HAVE_NMI
select HAVE_PATA_PLATFORM
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_KRETPROBES
select NO_BOOTMEM
select OF
select OF_EARLY_FLATTREE
select OF_RESERVED_MEM
select PCI_ECAM if ACPI
select POWER_RESET
select POWER_SUPPLY
Catalin Marinas
committed
select SYSCTL_EXCEPTION_TRACE
help
ARM 64-bit (AArch64) Linux support.
config 64BIT
def_bool y
config ARCH_PHYS_ADDR_T_64BIT
def_bool y
config MMU
def_bool y
config ARM64_PAGE_SHIFT
int
default 16 if ARM64_64K_PAGES
default 14 if ARM64_16K_PAGES
default 12
config ARM64_CONT_SHIFT
int
default 5 if ARM64_64K_PAGES
default 7 if ARM64_16K_PAGES
default 4
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
config ARCH_MMAP_RND_BITS_MIN
default 14 if ARM64_64K_PAGES
default 16 if ARM64_16K_PAGES
default 18
# max bits determined by the following formula:
# VA_BITS - PAGE_SHIFT - 3
config ARCH_MMAP_RND_BITS_MAX
default 19 if ARM64_VA_BITS=36
default 24 if ARM64_VA_BITS=39
default 27 if ARM64_VA_BITS=42
default 30 if ARM64_VA_BITS=47
default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
default 33 if ARM64_VA_BITS=48
default 14 if ARM64_64K_PAGES
default 16 if ARM64_16K_PAGES
default 18
config ARCH_MMAP_RND_COMPAT_BITS_MIN
default 7 if ARM64_64K_PAGES
default 9 if ARM64_16K_PAGES
default 11
config ARCH_MMAP_RND_COMPAT_BITS_MAX
default 16
config STACKTRACE_SUPPORT
def_bool y
config ILLEGAL_POINTER_VALUE
hex
default 0xdead000000000000
config LOCKDEP_SUPPORT
def_bool y
config TRACE_IRQFLAGS_SUPPORT
def_bool y
config RWSEM_XCHGADD_ALGORITHM
config GENERIC_BUG
def_bool y
depends on BUG
config GENERIC_BUG_RELATIVE_POINTERS
def_bool y
depends on GENERIC_BUG
config GENERIC_HWEIGHT
def_bool y
config GENERIC_CSUM
def_bool y
config GENERIC_CALIBRATE_DELAY
def_bool y
Kirill A. Shutemov
committed
config HAVE_GENERIC_GUP
config ARCH_DMA_ADDR_T_64BIT
def_bool y
config NEED_DMA_MAP_STATE
def_bool y
config NEED_SG_DMA_LENGTH
def_bool y
config SMP
def_bool y
config SWIOTLB
def_bool y
config IOMMU_HELPER
def_bool SWIOTLB
config KERNEL_MODE_NEON
def_bool y
config FIX_EARLYCON_MEM
def_bool y
config PGTABLE_LEVELS
int
default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
default 3 if ARM64_64K_PAGES && ARM64_VA_BITS_48
default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
config ARCH_SUPPORTS_UPROBES
def_bool y
config ARCH_PROC_KCORE_TEXT
def_bool y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
config PCI
bool "PCI support"
help
This feature enables support for PCI bus system. If you say Y
here, the kernel will include drivers and infrastructure code
to support PCI bus devices.
config PCI_DOMAINS
def_bool PCI
config PCI_DOMAINS_GENERIC
def_bool PCI
config PCI_SYSCALL
def_bool PCI
source "drivers/pci/Kconfig"
endmenu
menu "Kernel Features"
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
menu "ARM errata workarounds via the alternatives framework"
config ARM64_ERRATUM_826319
bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
AXI master interface and an L2 cache.
If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
and is unable to accept a certain write via this interface, it will
not progress on read data presented on the read data channel and the
system can deadlock.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_827319
bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
master interface and an L2 cache.
Under certain conditions this erratum can cause a clean line eviction
to occur at the same time as another transaction to the same address
on the AMBA 5 CHI interface, which can cause data corruption if the
interconnect reorders the two transactions.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_824069
bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
to a coherent interconnect.
If a Cortex-A53 processor is executing a store or prefetch for
write instruction at the same time as a processor in another
cluster is executing a cache maintenance operation to the same
address, then this erratum might cause a clean cache line to be
incorrectly marked as dirty.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this option does not necessarily enable the
workaround, as it depends on the alternative framework, which will
only patch the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_819472
bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
present when it is connected to a coherent interconnect.
If the processor is executing a load and store exclusive sequence at
the same time as a processor in another cluster is executing a cache
maintenance operation to the same address, then this erratum might
cause data corruption.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_832075
bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 832075 on Cortex-A57 parts up to r1p2.
Affected Cortex-A57 parts might deadlock when exclusive load/store
instructions to Write-Back memory are mixed with Device loads.
The workaround is to promote device loads to use Load-Acquire
semantics.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_834220
bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
depends on KVM
default y
help
This option adds an alternative code sequence to work around ARM
erratum 834220 on Cortex-A57 parts up to r1p2.
Affected Cortex-A57 parts might report a Stage 2 translation
fault as the result of a Stage 1 fault for load crossing a
page boundary when there is a permission or device memory
alignment fault at Stage 1 and a translation fault at Stage 2.
The workaround is to verify that the Stage 1 translation
doesn't generate a fault before handling the Stage 2 fault.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_845719
bool "Cortex-A53: 845719: a load might read incorrect data"
depends on COMPAT
default y
help
This option adds an alternative code sequence to work around ARM
erratum 845719 on Cortex-A53 parts up to r0p4.
When running a compat (AArch32) userspace on an affected Cortex-A53
part, a load at EL0 from a virtual address that matches the bottom 32
bits of the virtual address used by a recent load at (AArch64) EL1
might return incorrect data.
The workaround is to write the contextidr_el1 register on exception
return to a 32-bit task.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_843419
bool "Cortex-A53: 843419: A load or store might access an incorrect address"
default y
select ARM64_MODULE_CMODEL_LARGE if MODULES
This option links the kernel with '--fix-cortex-a53-843419' and
builds modules using the large memory model in order to avoid the use
of the ADRP instruction, which can cause a subsequent memory access
to use an incorrect address on Cortex-A53 parts up to r0p4.
If unsure, say Y.
config CAVIUM_ERRATUM_22375
bool "Cavium erratum 22375, 24313"
default y
help
Enable workaround for erratum 22375, 24313.
This implements two gicv3-its errata workarounds for ThunderX. Both
with small impact affecting only ITS table allocation.
erratum 22375: only alloc 8MB table size
erratum 24313: ignore memory access type
The fixes are in ITS initialization and basically ignore memory access
type and table size provided by the TYPER and BASER registers.
If unsure, say Y.
Ganapatrao Kulkarni
committed
config CAVIUM_ERRATUM_23144
bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
depends on NUMA
default y
help
ITS SYNC command hang for cross node io and collections/cpu mapping.
If unsure, say Y.
config CAVIUM_ERRATUM_23154
bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
default y
help
The gicv3 of ThunderX requires a modified version for
reading the IAR status to ensure data synchronization
(access to icc_iar1_el1 is not sync'ed before and after).
If unsure, say Y.
config CAVIUM_ERRATUM_27456
bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
default y
help
On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it
contains data for a non-current ASID. The fix is to
invalidate the icache when changing the mm context.
If unsure, say Y.
config CAVIUM_ERRATUM_30115
bool "Cavium erratum 30115: Guest may disable interrupts in host"
default y
help
On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1.2, and T83 Pass 1.0, KVM guest execution may disable
interrupts in host. Trapping both GICv3 group-0 and group-1
accesses sidesteps the issue.
If unsure, say Y.
config QCOM_FALKOR_ERRATUM_1003
bool "Falkor E1003: Incorrect translation due to ASID change"
default y
help
On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
in TTBR1_EL1, this situation only occurs in the entry trampoline and
then only for entries in the walk cache, since the leaf translation
is unchanged. Work around the erratum by invalidating the walk cache
entries for the trampoline before entering the kernel proper.
config QCOM_FALKOR_ERRATUM_1009
bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
default y
help
On Falkor v1, the CPU may prematurely complete a DSB following a
TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
one more time to fix the issue.
If unsure, say Y.
config QCOM_QDF2400_ERRATUM_0065
bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
default y
help
On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
been indicated as 16Bytes (0xf), not 8Bytes (0x7).
If unsure, say Y.
config SOCIONEXT_SYNQUACER_PREITS
bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
default y
help
Socionext Synquacer SoCs implement a separate h/w block to generate
MSI doorbell writes with non-zero values for the device ID.
If unsure, say Y.
config HISILICON_ERRATUM_161600802
bool "Hip07 161600802: Erroneous redistributor VLPI base"
default y
help
The HiSilicon Hip07 SoC usees the wrong redistributor base
when issued ITS commands such as VMOVP and VMAPP, and requires
a 128kB offset to be applied to the target address in this commands.
config QCOM_FALKOR_ERRATUM_E1041
bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
default y
help
Falkor CPU may speculatively fetch instructions from an improper
memory location when MMU translation is changed from SCTLR_ELn[M]=1
to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
If unsure, say Y.
endmenu
choice
prompt "Page size"
default ARM64_4K_PAGES
help
Page size (translation granule) configuration.
config ARM64_4K_PAGES
bool "4KB"
help
This feature enables 4KB pages support.
config ARM64_16K_PAGES
bool "16KB"
help
The system will use 16KB pages support. AArch32 emulation
requires applications compiled with 16K (or a multiple of 16K)
aligned segments.
help
This feature enables 64KB pages support (4KB by default)
allowing only two levels of page tables and faster TLB
look-up. AArch32 emulation requires applications compiled
with 64K aligned segments.
endchoice
choice
prompt "Virtual address space size"
default ARM64_VA_BITS_39 if ARM64_4K_PAGES
default ARM64_VA_BITS_47 if ARM64_16K_PAGES
default ARM64_VA_BITS_42 if ARM64_64K_PAGES
help
Allows choosing one of multiple possible virtual address
space sizes. The level of translation table is determined by
a combination of page size and virtual address space size.
config ARM64_VA_BITS_39
bool "39-bit"
depends on ARM64_4K_PAGES
config ARM64_VA_BITS_42
bool "42-bit"
depends on ARM64_64K_PAGES
config ARM64_VA_BITS_47
bool "47-bit"
depends on ARM64_16K_PAGES
config ARM64_VA_BITS_48
bool "48-bit"
endchoice
config ARM64_VA_BITS
int
default 39 if ARM64_VA_BITS_39
default 42 if ARM64_VA_BITS_42
default 48 if ARM64_VA_BITS_48
choice
prompt "Physical address space size"
default ARM64_PA_BITS_48
help
Choose the maximum physical address range that the kernel will
support.
config ARM64_PA_BITS_48
bool "48-bit"
config ARM64_PA_BITS_52
bool "52-bit (ARMv8.2)"
depends on ARM64_64K_PAGES
depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
help
Enable support for a 52-bit physical address space, introduced as
part of the ARMv8.2-LPA extension.
With this enabled, the kernel will also continue to work on CPUs that
do not support ARMv8.2-LPA, but with some added memory overhead (and
minor performance overhead).
endchoice
config ARM64_PA_BITS
int
default 48 if ARM64_PA_BITS_48
default 52 if ARM64_PA_BITS_52
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
help
Say Y if you plan on running a kernel in big-endian mode.
config SCHED_MC
bool "Multi-core scheduler support"
help
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
config SCHED_SMT
bool "SMT scheduler support"
help
Improves the CPU scheduler's decision making when dealing with
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
int "Maximum number of CPUs (2-4096)"
range 2 4096
# These have to remain sorted largest to smallest
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
select GENERIC_IRQ_MIGRATION
help
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu.
# Common NUMA Features
config NUMA
bool "Numa Memory Allocation and Scheduler Support"
select ACPI_NUMA if ACPI
select OF_NUMA
help
Enable NUMA (Non Uniform Memory Access) support.
The kernel will try to allocate memory used by a CPU on the
local memory of the CPU and add some more
NUMA awareness to the kernel.
config NODES_SHIFT
int "Maximum NUMA Nodes (as a power of 2)"
range 1 10
default "2"
depends on NEED_MULTIPLE_NODES
help
Specify the maximum number of NUMA Nodes available on the target
system. Increases memory reserved to accommodate various tables.
config USE_PERCPU_NUMA_NODE_ID
def_bool y
depends on NUMA
config HAVE_SETUP_PER_CPU_AREA
def_bool y
depends on NUMA
config NEED_PER_CPU_EMBED_FIRST_CHUNK
def_bool y
depends on NUMA
config HOLES_IN_ZONE
def_bool y
depends on NUMA
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
def_bool y
config ARCH_HAS_HOLES_MEMORYMODEL
def_bool y if SPARSEMEM
config ARCH_SPARSEMEM_ENABLE
def_bool y
select SPARSEMEM_VMEMMAP_ENABLE
config ARCH_SPARSEMEM_DEFAULT
def_bool ARCH_SPARSEMEM_ENABLE
config ARCH_SELECT_MEMORY_MODEL
def_bool ARCH_SPARSEMEM_ENABLE
config HAVE_ARCH_PFN_VALID
def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
config HW_PERF_EVENTS
def_bool y
depends on ARM_PMU
config SYS_SUPPORTS_HUGETLBFS
def_bool y
config ARCH_WANT_HUGE_PMD_SHARE
def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
config ARCH_HAS_CACHE_LINE_SIZE
def_bool y
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
---help---
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
Stefano Stabellini
committed
config PARAVIRT
bool "Enable paravirtualization code"
help
This changes the kernel so it can modify itself when it is run
under a hypervisor, potentially improving performance significantly
over full virtualization.
config PARAVIRT_TIME_ACCOUNTING
bool "Paravirtual steal time accounting"
select PARAVIRT
default n
help
Select this option to enable fine granularity task steal time
accounting. Time spent executing other tasks in parallel with
the current vCPU is discounted from the vCPU power. To account for
that, there can be a small performance impact.
If in doubt, say N here.
config KEXEC
depends on PM_SLEEP_SMP
select KEXEC_CORE
bool "kexec system call"
---help---
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
config CRASH_DUMP
bool "Build kdump crash kernel"
help
Generate crash dump after being started by kexec. This should
be normally only set in special crash dump kernels which are
loaded in the main kernel with kexec-tools into a specially
reserved region and then later executed after a crash by
kdump/kexec.
For more details see Documentation/kdump/kdump.txt
config XEN_DOM0
def_bool y
depends on XEN
config XEN
bool "Xen guest support on ARM64"
depends on ARM64 && OF
Stefano Stabellini
committed
select PARAVIRT
help
Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
config FORCE_MAX_ZONEORDER
int
default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
help
The kernel memory allocator divides physically contiguous memory
blocks into "zones", where each zone is a power of two number of
pages. This option selects the largest power of two that the kernel
keeps in the memory allocator. If you need to allocate very large
blocks of physically contiguous memory, then you may need to
increase this value.
This config option is actually maximum order plus one. For example,
a value of 11 means that the largest free memory block is 2^10 pages.
We make sure that we can allocate upto a HugePage size for each configuration.
Hence we have :
MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
4M allocations matching the default size used by generic code.
bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
Speculation attacks against some high-performance processors can
be used to bypass MMU permission checks and leak kernel data to
userspace. This can be defended against by unmapping the kernel
when running in userspace, mapping it back in on exception entry
via a trampoline page in the vector table.
config HARDEN_BRANCH_PREDICTOR
bool "Harden the branch predictor against aliasing attacks" if EXPERT
default y
help
Speculation attacks against some high-performance processors rely on
being able to manipulate the branch predictor for a victim context by
executing aliasing branches in the attacker context. Such attacks
can be partially mitigated against by clearing internal branch
predictor state and limiting the prediction logic in some situations.
This config option will take CPU-specific actions to harden the
branch predictor against aliasing attacks and may rely on specific
instruction sequences or control bits being set by the system
firmware.
If unsure, say Y.
menuconfig ARMV8_DEPRECATED
bool "Emulate deprecated/obsolete ARMv8 instructions"
depends on COMPAT
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
help
Legacy software support may require certain instructions
that have been deprecated or obsoleted in the architecture.
Enable this config to enable selective emulation of these
features.
If unsure, say Y
if ARMV8_DEPRECATED
config SWP_EMULATION
bool "Emulate SWP/SWPB instructions"
help
ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
they are always undefined. Say Y here to enable software
emulation of these instructions for userspace using LDXR/STXR.
In some older versions of glibc [<=2.8] SWP is used during futex
trylock() operations with the assumption that the code will not
be preempted. This invalid assumption may be more likely to fail
with SWP emulation enabled, leading to deadlock of the user
application.
NOTE: when accessing uncached shared regions, LDXR/STXR rely
on an external transaction monitoring block called a global
monitor to maintain update atomicity. If your system does not
implement a global monitor, this option can cause programs that
perform SWP operations to uncached memory to deadlock.
If unsure, say Y
config CP15_BARRIER_EMULATION
bool "Emulate CP15 Barrier instructions"
help
The CP15 barrier instructions - CP15ISB, CP15DSB, and
CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
strongly recommended to use the ISB, DSB, and DMB
instructions instead.
Say Y here to enable software emulation of these
instructions for AArch32 userspace code. When this option is
enabled, CP15 barrier usage is traced which can help
identify software that needs updating.
If unsure, say Y
config SETEND_EMULATION
bool "Emulate SETEND instruction"
help
The SETEND instruction alters the data-endianness of the
AArch32 EL0, and is deprecated in ARMv8.
Say Y here to enable software emulation of the instruction
for AArch32 userspace code.
Note: All the cpus on the system must have mixed endian support at EL0
for this feature to be enabled. If a new CPU - which doesn't support mixed
endian - is hotplugged in after this feature has been enabled, there could
be unexpected results in the applications.
If unsure, say Y
config ARM64_SW_TTBR0_PAN
bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
help
Enabling this option prevents the kernel from accessing
user-space memory directly by pointing TTBR0_EL1 to a reserved
zeroed area and reserved ASID. The user access routines
restore the valid TTBR0_EL1 temporarily.
menu "ARMv8.1 architectural features"
config ARM64_HW_AFDBM
bool "Support for hardware updates of the Access and Dirty page flags"
default y
help
The ARMv8.1 architecture extensions introduce support for
hardware updates of the access and dirty information in page
table entries. When enabled in TCR_EL1 (HA and HD bits) on
capable processors, accesses to pages with PTE_AF cleared will
set this bit instead of raising an access flag fault.
Similarly, writes to read-only pages with the DBM bit set will
clear the read-only bit (AP[2]) instead of raising a
permission fault.
Kernels built with this configuration option enabled continue
to work on pre-ARMv8.1 hardware and the performance impact is