Newer
Older
if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
goto out;
else
break;
if (notify_die(DIE_BREAK, "debug", regs, bcode,
current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
else
break;
case BRK_KPROBE_SSTEPBP:
if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
else
break;
default:
break;
}
Maciej W. Rozycki
committed
do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
set_fs(seg);
out_sigsegv:
force_sig(SIGSEGV, current);
}
asmlinkage void do_tr(struct pt_regs *regs)
{
mm_segment_t seg;
unsigned long epc = msk_isa16_mode(exception_epc(regs));
seg = get_fs();
if (!user_mode(regs))
set_fs(get_ds());
current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
if (get_isa16_mode(regs->cp0_epc)) {
if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
__get_user(instr[1], (u16 __user *)(epc + 2)))
goto out_sigsegv;
opcode = (instr[0] << 16) | instr[1];
/* Immediate versions don't provide a code. */
if (!(opcode & OPCODE))
tcode = (opcode >> 12) & ((1 << 4) - 1);
} else {
if (__get_user(opcode, (u32 __user *)epc))
goto out_sigsegv;
/* Immediate versions don't provide a code. */
if (!(opcode & OPCODE))
tcode = (opcode >> 6) & ((1 << 10) - 1);
Maciej W. Rozycki
committed
do_trap_or_bp(regs, tcode, 0, "Trap");
set_fs(seg);
out_sigsegv:
force_sig(SIGSEGV, current);
}
asmlinkage void do_ri(struct pt_regs *regs)
{
unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
unsigned long old_epc = regs->cp0_epc;
unsigned long old31 = regs->regs[31];
unsigned int opcode = 0;
int status = -1;
/*
* Avoid any kernel code. Just emulate the R2 instruction
* as quickly as possible.
*/
if (mipsr2_emulation && cpu_has_mips_r6 &&
likely(user_mode(regs)) &&
likely(get_user(opcode, epc) >= 0)) {
unsigned long fcr31 = 0;
status = mipsr2_decoder(regs, opcode, &fcr31);
switch (status) {
case 0:
case SIGEMT:
task_thread_info(current)->r2_emul_return = 1;
return;
case SIGILL:
goto no_r2_instr;
default:
process_fpemu_return(status,
¤t->thread.cp0_baduaddr,
fcr31);
task_thread_info(current)->r2_emul_return = 1;
return;
}
}
no_r2_instr:
current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
SIGILL) == NOTIFY_STOP)
die_if_kernel("Reserved instruction in kernel code", regs);
if (unlikely(compute_return_epc(regs) < 0))
if (get_isa16_mode(regs->cp0_epc)) {
unsigned short mmop[2] = { 0 };
if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
status = SIGSEGV;
if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
status = SIGSEGV;
opcode = mmop[0];
opcode = (opcode << 16) | mmop[1];
if (status < 0)
status = simulate_rdhwr_mm(regs, opcode);
} else {
if (unlikely(get_user(opcode, epc) < 0))
status = SIGSEGV;
if (!cpu_has_llsc && status < 0)
status = simulate_llsc(regs, opcode);
if (status < 0)
status = simulate_rdhwr_normal(regs, opcode);
if (status < 0)
status = simulate_sync(regs, opcode);
if (status < 0)
status = simulate_fp(regs, opcode, old_epc, old31);
if (status < 0)
status = SIGILL;
if (unlikely(status > 0)) {
regs->cp0_epc = old_epc; /* Undo skip-over. */
regs->regs[31] = old31;
force_sig(status, current);
}
out:
exception_exit(prev_state);
/*
* MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
* emulated more than some threshold number of instructions, force migration to
* a "CPU" that has FP support.
*/
static void mt_ase_fp_affinity(void)
{
#ifdef CONFIG_MIPS_MT_FPAFF
if (mt_fpemul_threshold > 0 &&
((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
/*
* If there's no FPU present, or if the application has already
* restricted the allowed set to exclude any CPUs with FPUs,
* we'll skip the procedure.
*/
if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
current->thread.user_cpus_allowed
= current->cpus_allowed;
cpumask_and(&tmask, ¤t->cpus_allowed,
&mt_fpu_cpumask);
}
}
#endif /* CONFIG_MIPS_MT_FPAFF */
}
/*
* No lock; only written during early bootup by CPU 0.
*/
static RAW_NOTIFIER_HEAD(cu2_chain);
int __ref register_cu2_notifier(struct notifier_block *nb)
{
return raw_notifier_chain_register(&cu2_chain, nb);
}
int cu2_notifier_call_chain(unsigned long val, void *v)
{
return raw_notifier_call_chain(&cu2_chain, val, v);
}
static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
static int wait_on_fp_mode_switch(atomic_t *p)
{
/*
* The FP mode for this task is currently being switched. That may
* involve modifications to the format of this tasks FP context which
* make it unsafe to proceed with execution for the moment. Instead,
* schedule some other task.
*/
schedule();
return 0;
}
static int enable_restore_fp_context(int msa)
{
int err, was_fpu_owner, prior_msa;
/*
* If an FP mode switch is currently underway, wait for it to
* complete before proceeding.
*/
wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
wait_on_fp_mode_switch, TASK_KILLABLE);
if (!used_math()) {
/* First time FP context user. */
if (msa && !err) {
_init_msa_upper();
set_thread_flag(TIF_USEDMSA);
set_thread_flag(TIF_MSA_CTX_LIVE);
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
if (!err)
set_used_math();
return err;
}
/*
* This task has formerly used the FP context.
*
* If this thread has no live MSA vector context then we can simply
* restore the scalar FP context. If it has live MSA vector context
* (that is, it has or may have used MSA since last performing a
* function call) then we'll need to restore the vector context. This
* applies even if we're currently only executing a scalar FP
* instruction. This is because if we were to later execute an MSA
* instruction then we'd either have to:
*
* - Restore the vector context & clobber any registers modified by
* scalar FP instructions between now & then.
*
* or
*
* - Not restore the vector context & lose the most significant bits
* of all vector registers.
*
* Neither of those options is acceptable. We cannot restore the least
* significant bits of the registers now & only restore the most
* significant bits later because the most significant bits of any
* vector registers whose aliased FP register is modified now will have
* been zeroed. We'd have no way to know that when restoring the vector
* context & thus may load an outdated value for the most significant
* bits of a vector register.
*/
if (!msa && !thread_msa_context_live())
return own_fpu(1);
/*
* This task is using or has previously used MSA. Thus we require
* that Status.FR == 1.
*/
was_fpu_owner = is_fpu_owner();
err = own_fpu_inatomic(0);
enable_msa();
write_msa_csr(current->thread.fpu.msacsr);
set_thread_flag(TIF_USEDMSA);
/*
* If this is the first time that the task is using MSA and it has
* previously used scalar FP in this time slice then we already nave
* FP context which we shouldn't clobber. We do however need to clear
* the upper 64b of each vector register so that this task has no
* opportunity to see data left behind by another.
prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
if (!prior_msa && was_fpu_owner) {
_init_msa_upper();
if (!prior_msa) {
/*
* Restore the least significant 64b of each vector register
* from the existing scalar FP context.
*/
_restore_fp(current);
/*
* The task has not formerly used MSA, so clear the upper 64b
* of each vector register such that it cannot see data left
* behind by another task.
*/
_init_msa_upper();
} else {
/* We need to restore the vector context. */
restore_msa(current);
/* Restore the scalar FP control & status register */
if (!was_fpu_owner)
write_32bit_cp1_register(CP1_STATUS,
current->thread.fpu.fcr31);
out:
preempt_enable();
unsigned int __user *epc;
unsigned long old_epc, old31;
void __user *fault_addr;
unsigned long fcr31;
unsigned long __maybe_unused flags;
int sig;
if (cpid != 2)
die_if_kernel("do_cpu invoked from kernel context!", regs);
epc = (unsigned int __user *)exception_epc(regs);
old_epc = regs->cp0_epc;
old31 = regs->regs[31];
opcode = 0;
status = -1;
if (unlikely(compute_return_epc(regs) < 0))
if (!get_isa16_mode(regs->cp0_epc)) {
if (unlikely(get_user(opcode, epc) < 0))
status = SIGSEGV;
if (!cpu_has_llsc && status < 0)
status = simulate_llsc(regs, opcode);
}
if (status < 0)
status = SIGILL;
if (unlikely(status > 0)) {
regs->cp0_epc = old_epc; /* Undo skip-over. */
regs->regs[31] = old31;
force_sig(status, current);
}
case 3:
/*
* The COP3 opcode space and consequently the CP0.Status.CU3
* bit and the CP0.Cause.CE=3 encoding have been removed as
* of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
* up the space has been reused for COP1X instructions, that
* are enabled by the CP0.Status.CU1 bit and consequently
* use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
* exceptions. Some FPU-less processors that implement one
* of these ISAs however use this code erroneously for COP1X
* instructions. Therefore we redirect this trap to the FP
* emulator too.
if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
force_sig(SIGILL, current);
break;
/* Fall through. */
err = enable_restore_fp_context(0);
if (raw_cpu_has_fpu && !err)
break;
sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
&fault_addr);
fcr31 = current->thread.fpu.fcr31;
/*
* We can't allow the emulated instruction to leave
* any of the cause bits set in $fcr31.
*/
current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
/* Send a signal if required. */
if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
mt_ase_fp_affinity();
raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
{
enum ctx_state prev_state;
prev_state = exception_enter();
current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
goto out;
/* Clear MSACSR.Cause before enabling interrupts */
write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
local_irq_enable();
die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
force_sig(SIGFPE, current);
exception_exit(prev_state);
}
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
asmlinkage void do_msa(struct pt_regs *regs)
{
enum ctx_state prev_state;
int err;
prev_state = exception_enter();
if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
force_sig(SIGILL, current);
goto out;
}
die_if_kernel("do_msa invoked from kernel context!", regs);
err = enable_restore_fp_context(1);
if (err)
force_sig(SIGILL, current);
out:
exception_exit(prev_state);
}
enum ctx_state prev_state;
prev_state = exception_enter();
/*
* Called with interrupts disabled.
*/
asmlinkage void do_watch(struct pt_regs *regs)
{
Maciej W. Rozycki
committed
siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
* Clear WP (bit 22) bit of cause register so we don't loop
* forever.
cause = read_c0_cause();
cause &= ~(1 << 22);
write_c0_cause(cause);
/*
* If the current thread has the watch registers loaded, save
* their values and send SIGTRAP. Otherwise another thread
* left the registers set, clear them and continue.
*/
if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
mips_read_watch_registers();
Maciej W. Rozycki
committed
force_sig_info(SIGTRAP, &info, current);
mips_clear_watch_registers();
local_irq_enable();
}
}
asmlinkage void do_mcheck(struct pt_regs *regs)
{
int multi_match = regs->cp0_status & ST0_TS;
mm_segment_t old_fs = get_fs();
if (multi_match) {
dump_tlb_regs();
pr_info("\n");
dump_tlb_all();
}
if (!user_mode(regs))
set_fs(KERNEL_DS);
show_code((unsigned int __user *) regs->cp0_epc);
/*
* Some chips may have other causes of machine check (e.g. SB1
* graduation timer)
*/
panic("Caught Machine Check exception - %scaused by multiple "
"matching entries in the TLB.",
(multi_match) ? "" : "not ");
asmlinkage void do_mt(struct pt_regs *regs)
{
int subcode;
subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
>> VPECONTROL_EXCPT_SHIFT;
switch (subcode) {
case 0:
printk(KERN_DEBUG "Thread Underflow\n");
printk(KERN_DEBUG "Thread Overflow\n");
printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
printk(KERN_DEBUG "Gating Storage Exception\n");
printk(KERN_DEBUG "YIELD Scheduler Exception\n");
printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
subcode);
break;
}
die_if_kernel("MIPS MT Thread exception in kernel", regs);
force_sig(SIGILL, current);
}
asmlinkage void do_dsp(struct pt_regs *regs)
{
if (cpu_has_dsp)
panic("Unexpected DSP exception");
force_sig(SIGILL, current);
}
asmlinkage void do_reserved(struct pt_regs *regs)
{
/*
* Game over - no way to handle this if it ever occurs. Most probably
* caused by a new unknown cpu type or after another deadly
* hard/software error.
*/
show_regs(regs);
panic("Caught reserved exception %ld - should not happen.",
(regs->cp0_cause & 0x7f) >> 2);
}
static int __initdata l1parity = 1;
static int __init nol1parity(char *s)
{
l1parity = 0;
return 1;
}
__setup("nol1par", nol1parity);
static int __initdata l2parity = 1;
static int __init nol2parity(char *s)
{
l2parity = 0;
return 1;
}
__setup("nol2par", nol2parity);
/*
* Some MIPS CPUs can enable/disable for cache parity detection, but do
* it different ways.
*/
static inline void parity_protection_init(void)
{
switch (current_cpu_type()) {
case CPU_74K:
case CPU_1004K:
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
{
#define ERRCTL_PE 0x80000000
#define ERRCTL_L2P 0x00800000
unsigned long errctl;
unsigned int l1parity_present, l2parity_present;
errctl = read_c0_ecc();
errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
/* probe L1 parity support */
write_c0_ecc(errctl | ERRCTL_PE);
back_to_back_c0_hazard();
l1parity_present = (read_c0_ecc() & ERRCTL_PE);
/* probe L2 parity support */
write_c0_ecc(errctl|ERRCTL_L2P);
back_to_back_c0_hazard();
l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
if (l1parity_present && l2parity_present) {
if (l1parity)
errctl |= ERRCTL_PE;
if (l1parity ^ l2parity)
errctl |= ERRCTL_L2P;
} else if (l1parity_present) {
if (l1parity)
errctl |= ERRCTL_PE;
} else if (l2parity_present) {
if (l2parity)
errctl |= ERRCTL_L2P;
} else {
/* No parity available */
}
printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
write_c0_ecc(errctl);
back_to_back_c0_hazard();
errctl = read_c0_ecc();
printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
if (l1parity_present)
printk(KERN_INFO "Cache parity protection %sabled\n",
(errctl & ERRCTL_PE) ? "en" : "dis");
if (l2parity_present) {
if (l1parity_present && l1parity)
errctl ^= ERRCTL_L2P;
printk(KERN_INFO "L2 cache parity protection %sabled\n",
(errctl & ERRCTL_L2P) ? "en" : "dis");
}
}
break;
write_c0_ecc(0x80000000);
back_to_back_c0_hazard();
/* Set the PE bit (bit 31) in the c0_errctl register. */
printk(KERN_INFO "Cache parity protection %sabled\n",
(read_c0_ecc() & 0x80000000) ? "en" : "dis");
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
break;
case CPU_20KC:
case CPU_25KF:
/* Clear the DE bit (bit 16) in the c0_status register. */
printk(KERN_INFO "Enable cache parity protection for "
"MIPS 20KC/25KF CPUs.\n");
clear_c0_status(ST0_DE);
break;
default:
break;
}
}
asmlinkage void cache_parity_error(void)
{
const int field = 2 * sizeof(unsigned long);
unsigned int reg_val;
/* For the moment, report the problem and hang. */
printk("Cache error exception:\n");
printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
reg_val = read_c0_cacheerr();
printk("c0_cacheerr == %08x\n", reg_val);
printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
reg_val & (1<<30) ? "secondary" : "primary",
reg_val & (1<<31) ? "data" : "insn");
if ((cpu_has_mips_r2_r6) &&
((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
reg_val & (1<<29) ? "ED " : "",
reg_val & (1<<28) ? "ET " : "",
reg_val & (1<<27) ? "ES " : "",
reg_val & (1<<26) ? "EE " : "",
reg_val & (1<<25) ? "EB " : "",
reg_val & (1<<24) ? "EI " : "",
reg_val & (1<<23) ? "E1 " : "",
reg_val & (1<<22) ? "E0 " : "");
} else {
pr_err("Error bits: %s%s%s%s%s%s%s\n",
reg_val & (1<<29) ? "ED " : "",
reg_val & (1<<28) ? "ET " : "",
reg_val & (1<<26) ? "EE " : "",
reg_val & (1<<25) ? "EB " : "",
reg_val & (1<<24) ? "EI " : "",
reg_val & (1<<23) ? "E1 " : "",
reg_val & (1<<22) ? "E0 " : "");
}
#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
if (reg_val & (1<<22))
printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
if (reg_val & (1<<23))
printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
#endif
panic("Can't handle the cache error!");
}
asmlinkage void do_ftlb(void)
{
const int field = 2 * sizeof(unsigned long);
unsigned int reg_val;
/* For the moment, report the problem and hang. */
if ((cpu_has_mips_r2_r6) &&
((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
read_c0_ecc());
pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
reg_val = read_c0_cacheerr();
pr_err("c0_cacheerr == %08x\n", reg_val);
if ((reg_val & 0xc0000000) == 0xc0000000) {
pr_err("Decoded c0_cacheerr: FTLB parity error\n");
} else {
pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
reg_val & (1<<30) ? "secondary" : "primary",
reg_val & (1<<31) ? "data" : "insn");
}
} else {
pr_err("FTLB error exception\n");
}
/* Just print the cacheerr bits for now */
cache_parity_error();
}
/*
* SDBBP EJTAG debug exception handler.
* We skip the instruction and return to the next instruction.
*/
void ejtag_exception_handler(struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
unsigned long depc, old_epc, old_ra;
printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
if (debug & 0x80000000) {
/*
* In branch delay slot.
* We cheat a little bit here and use EPC to calculate the
* debug return address (DEPC). EPC is restored after the
* calculation.
*/
old_epc = regs->cp0_epc;
old_ra = regs->regs[31];
compute_return_epc(regs);
regs->regs[31] = old_ra;
} else
depc += 4;
write_c0_depc(depc);
#if 0
printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
write_c0_debug(debug | 0x100);
#endif
}
/*
* NMI exception handler.
* No lock; only written during early bootup by CPU 0.
static RAW_NOTIFIER_HEAD(nmi_chain);
int register_nmi_notifier(struct notifier_block *nb)
{
return raw_notifier_chain_register(&nmi_chain, nb);
}
void __noreturn nmi_exception_handler(struct pt_regs *regs)
char str[100];
nmi_enter();
snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
smp_processor_id(), regs->cp0_epc);
regs->cp0_epc = read_c0_errorepc();
die(str, regs);
nmi_exit();
#define VECTORSPACING 0x100 /* for EI/VI mode */
unsigned long ebase;
unsigned long vi_handlers[64];
void __init *set_except_vector(int n, void *addr)
#ifdef CONFIG_CPU_MICROMIPS
/*
* Only the TLB handlers are cache aligned with an even
* address. All other handlers are on an odd address and
* require no modification. Otherwise, MIPS32 mode will
* be entered when handling any TLB exceptions. That
* would be bad...since we must stay in microMIPS mode.
*/
if (!(handler & 0x1))
handler |= 1;
#endif
old_handler = xchg(&exception_handlers[n], handler);
#ifdef CONFIG_CPU_MICROMIPS
unsigned long jump_mask = ~((1 << 27) - 1);
#else
unsigned long jump_mask = ~((1 << 28) - 1);
u32 *buf = (u32 *)(ebase + 0x200);
unsigned int k0 = 26;
if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
uasm_i_j(&buf, handler & ~jump_mask);
uasm_i_nop(&buf);
} else {
UASM_i_LA(&buf, k0, handler);
uasm_i_jr(&buf, k0);
uasm_i_nop(&buf);
}
local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
}
return (void *)old_handler;
}
static void do_default_vi(void)
{
show_regs(get_irq_regs());
panic("Caught unexpected vectored interrupt.");
}
static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
{
unsigned long handler;
unsigned long old_handler = vi_handlers[n];
int srssets = current_cpu_data.srsets;
unsigned char *b;
BUG_ON(!cpu_has_veic && !cpu_has_vint);
if (addr == NULL) {
handler = (unsigned long) do_default_vi;
srs = 0;
handler = (unsigned long) addr;
vi_handlers[n] = handler;
b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
panic("Shadow register set %d not supported", srs);
if (cpu_has_veic) {
if (board_bind_eic_interrupt)
board_bind_eic_interrupt(n, srs);
/* SRSMap is only defined if shadow sets are implemented */
change_c0_srsmap(0xf << n*4, srs << n*4);
}
if (srs == 0) {
/*
* If no shadow set is selected then use the default handler
* that does normal register saving and standard interrupt exit
*/
extern char except_vec_vi, except_vec_vi_lui;
extern char except_vec_vi_ori, except_vec_vi_end;
extern char rollback_except_vec_vi;
char *vec_start = using_rollback_handler() ?
&rollback_except_vec_vi : &except_vec_vi;
#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
const int lui_offset = &except_vec_vi_lui - vec_start + 2;
const int ori_offset = &except_vec_vi_ori - vec_start + 2;
#else
const int lui_offset = &except_vec_vi_lui - vec_start;
const int ori_offset = &except_vec_vi_ori - vec_start;
#endif
const int handler_len = &except_vec_vi_end - vec_start;
if (handler_len > VECTORSPACING) {
/*
* Sigh... panicing won't help as the console
* is probably not configured :(
*/
panic("VECTORSPACING too small");
}
set_handler(((unsigned long)b - ebase), vec_start,
#ifdef CONFIG_CPU_MICROMIPS
(handler_len - 1));
#else
handler_len);
#endif
h = (u16 *)(b + lui_offset);
*h = (handler >> 16) & 0xffff;
h = (u16 *)(b + ori_offset);
*h = (handler & 0xffff);
local_flush_icache_range((unsigned long)b,
(unsigned long)(b+handler_len));
}
else {
/*
* In other cases jump directly to the interrupt handler. It
* is the handler's responsibility to save registers if required
* (eg hi/lo) and return from the exception using "eret".
*/
u32 insn;
h = (u16 *)b;
/* j handler */
#ifdef CONFIG_CPU_MICROMIPS
insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
#else
insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
#endif