Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
if (system_has_cap) {
/*
* Check if the new CPU misses an advertised feature,
* which is not safe to miss.
*/
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
break;
/*
* We have to issue cpu_enable() irrespective of
* whether the CPU has it or not, as it is enabeld
* system wide. It is upto the call back to take
* appropriate action on this CPU.
*/
if (caps->cpu_enable)
caps->cpu_enable(caps);
} else {
/*
* Check if the CPU has this capability if it isn't
* safe to have when the system doesn't.
*/
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
break;
}
}
if (i < ARM64_NCAPS) {
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
smp_processor_id(), caps->capability,
caps->desc, system_has_cap, cpu_has_cap);
return false;
}
return true;
}
* Check for CPU features that are used in early boot
* based on the Boot CPU value.
static void check_early_cpu_features(void)
verify_cpu_asid_bits();
/*
* Early features are used by the kernel already. If there
* is a conflict, we cannot proceed further.
*/
if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
cpu_panic_kernel();
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{
for (; caps->matches; caps++)
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
pr_crit("CPU%d: missing HWCAP: %s\n",
smp_processor_id(), caps->desc);
cpu_die_early();
}
}
static void verify_sve_features(void)
{
u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
u64 zcr = read_zcr_features();
unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
unsigned int len = zcr & ZCR_ELx_LEN_MASK;
if (len < safe_len || sve_verify_vq_map()) {
pr_crit("CPU%d: SVE: vector length support mismatch\n",
smp_processor_id());
cpu_die_early();
}
/* Add checks on other ZCR bits here if necessary */
}
/*
* Run through the enabled system capabilities and enable() it on this CPU.
* The capabilities were decided based on the available CPUs at the boot time.
* Any new CPU should match the system wide status of the capability. If the
* new CPU doesn't have a capability which the system now has enabled, we
* cannot do anything to fix it up and could cause unexpected failures. So
* we park the CPU.
*/
static void verify_local_cpu_capabilities(void)
/*
* The capabilities with SCOPE_BOOT_CPU are checked from
* check_early_cpu_features(), as they need to be verified
* on all secondary CPUs.
*/
if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
Suzuki K Poulose
committed
cpu_die_early();
verify_local_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
verify_local_elf_hwcaps(compat_elf_hwcaps);
if (system_supports_sve())
verify_sve_features();
void check_local_cpu_capabilities(void)
{
/*
* All secondary CPUs should conform to the early CPU features
* in use by the kernel based on boot CPU.
*/
check_early_cpu_features();
* If we haven't finalised the system capabilities, this CPU gets
* a chance to update the errata work arounds and local features.
* Otherwise, this CPU should verify that it has all the system
* advertised capabilities.
if (!system_capabilities_finalized())
update_cpu_capabilities(SCOPE_LOCAL_CPU);
else
verify_local_cpu_capabilities();
static void __init setup_boot_cpu_capabilities(void)
{
/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
enable_cpu_capabilities(SCOPE_BOOT_CPU);
}
bool this_cpu_has_cap(unsigned int n)
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
if (cap)
return cap->matches(cap, SCOPE_LOCAL_CPU);
}
return false;
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
void cpu_set_feature(unsigned int num)
{
WARN_ON(num >= MAX_CPU_FEATURES);
elf_hwcap |= BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_set_feature);
bool cpu_have_feature(unsigned int num)
{
WARN_ON(num >= MAX_CPU_FEATURES);
return elf_hwcap & BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_have_feature);
unsigned long cpu_get_elf_hwcap(void)
{
/*
* We currently only populate the first 32 bits of AT_HWCAP. Please
* note that for userspace compatibility we guarantee that bits 62
* and 63 will always be returned as 0.
*/
return lower_32_bits(elf_hwcap);
}
unsigned long cpu_get_elf_hwcap2(void)
{
return upper_32_bits(elf_hwcap);
}
static void __init setup_system_capabilities(void)
{
/*
* We have finalised the system-wide safe feature
* registers, finalise the capabilities that depend
* on it. Also enable all the available capabilities,
* that are not enabled already.
*/
update_cpu_capabilities(SCOPE_SYSTEM);
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
}
void __init setup_cpu_features(void)
setup_system_capabilities();
setup_elf_hwcaps(arm64_elf_hwcaps);
if (system_supports_32bit_el0())
setup_elf_hwcaps(compat_elf_hwcaps);
if (system_uses_ttbr0_pan())
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
minsigstksz_setup();
/* Advertise that we have computed the system capabilities */
finalize_system_capabilities();
/*
* Check for sane CTR_EL0.CWG value.
*/
cwg = cache_type_cwg();
if (!cwg)
pr_warn("No Cache Writeback Granule information, assuming %d\n",
ARCH_DMA_MINALIGN);
static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
{
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
}
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
/*
* We emulate only the following system register space.
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
* See Table C5-6 System instruction encodings for System register accesses,
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
*/
static inline bool __attribute_const__ is_emulated(u32 id)
{
return (sys_reg_Op0(id) == 0x3 &&
sys_reg_CRn(id) == 0x0 &&
sys_reg_Op1(id) == 0x0 &&
(sys_reg_CRm(id) == 0 ||
((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}
/*
* With CRm == 0, reg should be one of :
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
*/
static inline int emulate_id_reg(u32 id, u64 *valp)
{
switch (id) {
case SYS_MIDR_EL1:
*valp = read_cpuid_id();
break;
case SYS_MPIDR_EL1:
*valp = SYS_MPIDR_SAFE_VAL;
break;
case SYS_REVIDR_EL1:
/* IMPLEMENTATION DEFINED values are emulated with 0 */
*valp = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int emulate_sys_reg(u32 id, u64 *valp)
{
struct arm64_ftr_reg *regp;
if (!is_emulated(id))
return -EINVAL;
if (sys_reg_CRm(id) == 0)
return emulate_id_reg(id, valp);
regp = get_arm64_ftr_reg(id);
if (regp)
*valp = arm64_ftr_reg_user_value(regp);
else
/*
* The untracked registers are either IMPLEMENTATION DEFINED
* (e.g, ID_AFR0_EL1) or reserved RAZ.
*/
*valp = 0;
return 0;
}
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
{
int rc;
u64 val;
rc = emulate_sys_reg(sys_reg, &val);
if (!rc) {
pt_regs_write_reg(regs, rt, val);
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
return rc;
}
static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
u32 sys_reg, rt;
/*
* sys_reg values are defined as used in mrs/msr instruction.
* shift the imm value to get the encoding.
*/
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
return do_emulate_mrs(regs, sys_reg, rt);
}
static struct undef_hook mrs_hook = {
.instr_mask = 0xfff00000,
.instr_val = 0xd5300000,
.pstate_val = PSR_MODE_EL0t,
.fn = emulate_mrs,
};
static int __init enable_mrs_emulation(void)
{
register_undef_hook(&mrs_hook);
return 0;
}
core_initcall(enable_mrs_emulation);
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
char *buf)
{
if (__meltdown_safe)
return sprintf(buf, "Not affected\n");
if (arm64_kernel_unmapped_at_el0())
return sprintf(buf, "Mitigation: PTI\n");
return sprintf(buf, "Vulnerable\n");
}